Pages

ASK ME .......fill in the boxes with your questions. InsyaAllah, get the answer within 48 hours!

Name:
Email Address:
Kategori Pembaca Pelajar saya
Remaja / Pelajar
Belia / Penuntut IPT
Dewasa
Warga Pendidikan
Komen dan Cadangan penambahbaikan blog.
Kongsikan apa-apa sahaja. Utarakan soalan anda. InsyaAllah, saya akan berusaha menjawabnya.

This contact form was created by Freedback.

Berpindah-MOVING-

assalamualaikum.

Bermula Januari 2012, anwarjauhari telah menjadikan blog http://cikguhairul.blogspot.com sebagai laman utama.

Justeru, laman anwaruitm ini hanya akan digunakan bagi memuatkan entri tahap tinggi yang tidak sesuai dimuatkan di dalam blog cikguhairul.

Walaupun begitu, setiap komen dan maklumbalas (borang freedback) yang pengunjung tinggalkan tetap saya berikan perhatian.InsyaAllah.

Sunday, December 31, 2006

MUHASABAH DIRI KE ARAH MUKMIN CEMERLANG

Wednesday, December 20, 2006
Oleh Alexanderwathern

Ada orang Islam yang begitu gigih membaca al Quran, setiap hari melebihi satu juzuk tetapi malangnya dia tidak mengusahakan solat-solat sunat. Dia berasa puas hati dengan amalannya membaca al Quran itu tanpa mengambil tahu aspek-aspek ibadah yang lain. Ada orang yang begitu rajin berwirid, saban hari zikirnya ribuan tetapi dia tidak berdakwah kepada sesiapa.

Ada yang solat sunat melebihi dua puluh rakaat dalam sehari semalam, dia berasa puas begitu tapi mengabaikan solat fadhu berjemaah di tempat azan dilaungkan , iaitu di surau ataupun masjid. Ada yang ke sana ke mari berceramah dan mengajar agama tetapi malangnya tidak pula membuat kuliah harian atau minggan untuk anak isteri sendiri.

Ada pula yang begitu rajin berjemaah di masjid, tetapi malas mencari ilmu agama melalui jalan membaca, menonton, mendengar, mengarang, mengumpul bahan dan sebagainya.

Keadaan-keadaan di atas menghasilkan individu yang tidak seimbang. Minda mereka perlu dibuka agar mereka tidak berasa puas hati dengan apa yang mereka usahakan sahaja. Bagi sesetengah orang, mereka memahamkan diri mereka bahawa apa yang mereka usahakan itulah jalan agama yang sebenar.

Kalau dia rajin mengerjakan solat sunat melebihi dua puluh rakaat setiap hari, dia akan memandang rendah kepada orang lain yag hanya mampu melakukan enam rakaat sahaja sehari semalam. Maka keluarlah daripada mulutnya nasihat-nasihat agar orang lain mencontohinya.

Tetapi dia tidak sedar kemungkinan individu yang dinasihatinya itu mungkin ada melakukan amalan yang lain seperti berdakwah, menghafaz dua puluh minit sehari, membaca bahan agama dua jam sehari, merancang aktiviti-aktiviti agama dan seumpamanya.

Situasi ini tidak berlaku kepada orang awam sahaja, malah kadang-kala berlaku juga kepada mereka yang bergelar ulama. Untuk itu saya telah mencadangkan malah menjalankan satu kaedah muhasabah diri untuk digunakan oleh anak-anak buah dan kegunaan saya sendiri.

Untuk bakal pendakwah yang menunjukkan minat untuk terus bersama kita maka mereka hendaklah berusaha untuk mencapai perkara-perkara berikut setiap hari (selain solat fardhu lima waktu):

1.solat berjemaah 3 kali (lelaki sahaja), utamakan berjemaah di surau atau masjid

2.solat sunat 6 rakaat

3.membaca al Quran 1 muka (secara melihat)

4.menghafaz atau mengulangkaji hafazan 10 minit

5.wirid pagi atau petang, 15 minit setiap sesi (apa saja aurad, kami gunakan al-Ma'thurat)

6.qiamullail, sekurang-kurangnya 2 rakaat tahajjud

7.berdakwah, sekurang-kurangnya satu perkataan yang bererti, satu SMS dan seumpamanya

8.baca bahan agama 20 minit (juga menonton, mendengar, mengarang dsb)

9.kurangkan makanan yang boleh memudaratkan

10.ikram- membuatkan seseorang berasa seronok walaupun seketika

11.bacan-bacaan sebelum tidur

12.riadah 20 minit (lelaki)

Perkara-perkara di atas mesti diusahakan setiap hari. Selain itu ada beberapa perkara lain yang tidak setiap hari seperti:

1.puasa sunat sekali dalam sebulan

2.mengikuti apa jua majlis agama 3 jam seminggu (lelaki), 1 jam (wanita)

Sekiranya bakal pendakwah itu pelajar sekolah, pelajaran agama di sekolah tidak diambil kira.

Untuk ketua, pemimpin, naqib, naqibah, muallim dan seumpamanya, hendaklah mencapai perkara-perkara berikut:

1.solat sunat 15 rakaat

2.tilawah al Quran 1 juzuk (sama ada melalui penglihatan atau hafazan)

3.hafazan atau ulangkaji hafazan 15 minit

4.qiamullail sekurang-kurangnya 15 minit

5.riadah 20 minit sehari

6.sesi tarbiyyah keluarga 10 minit (bagi yang telah berkeluarga)

7.berdakwah, sekurang-kurangnya satu perkataan yang bererti, satu SMS dan seumpamanya

8.baca bahan agama 1 jam (juga menonton, mendengar, mengarang dsb)

9.kurangkan makanan yang boleh memudaratkan

10.ikram- membuatkan seseorang berasa seronok walaupun seketika

11.bacan-bacaan sebelum tidur

Perkara-perkara di atas mesti diusahakan setiap hari. Selain itu ada beberapa perkara lain yang tidak setiap hari seperti:

1. puasa sunat 3 kali dalam sebulan

2. mengikuti apa jua majlis agama 3 jam seminggu (lelaki), 1 jam (wanita)

Pencapaian di atas bukan kewajipan, tapi satu usaha untuk menggalakkam istiqamah dan menjadikan kita insan berjiwa agama yang seimbang. Jika kita boleh melakukan lebih daripada itu, sangat digalakkan.

Cuma jangan melampau dalam beribadah, kerana ditakuti kita tidak ada kesempatan untuk melakukan kerja-kerja lain yang turut dituntut agama terutamanya mencari nafkah, silaturrahim dan ilmu-ilmu duniawi.

Untuk individu yang baru berjinak-jinak dengan agama dan dakwah, cukuplah tiga perkara saja dititikberatkan iaitu:

1.solat sunat 6 rakaat sehari
2.membaca bahan agama 20 minit sehari
3.membuka dan membaca al Quran semuka sehari

Yang penting ialah kemampuan untuk istiqamah, bukannya kuantiti ibadah yang tinggi tetapi tidak stabil- hari ini solat sunatnya 30 rakaat, esok langsung tidak ada, lusa 10 rakaat… tiada istiqamah.

Ia bersifat fleksibel, jika kita dari Johor pergi ke Kuala Lumpur untuk berceramah umpamanya tentu saja kita tidak dapat menyelesaikan kesemua item tersebut, namun ada sistem pemarkahannya (tak dapat diterangkan secara terperinci di sini, mungkin kemudian hari apabila saya hidangkan kupasan artikel ini) yang menjadikan kita tidak kerugian apa-apa. Ini kerana perjalanan kita semasa pergi, berceramah dan pulang termasuk ke dalam "ikram" dan "dakwah".

Maka markah untuk "ikram" dan "dakwah" menjadi berganda. Ia menampung semula kerugian kita dalam item yang lain.

Berdasarkan pengalaman saya menjalankan kaedah muhasabah ini, ternyata ia amat berkesan untuk melahirkan individu pendakwah yang seimbang.

Artikel yang lebih terperinci akan menyusul insyaallah (mungkin lewat sedikit). Sebagai pengkayaan, diharap dapat juga membaca tulisan saya bertajuk CARA MENYUSUN "FOLDER" AGAMA ISLAM. Ada kaitannya secara tidak langsung dalam usaha kita melahirkan insan berjiwa global.

Selamat mengislah diri!

"PANDANG GLOBAL, BERGERAK SEBAGAI SATU UMAT"

Alexanderwathern

9 DIS 2006

http://myalexanderwathern.freephpnuke.org/gate.html?name=News&file=article&sid=59
serbanputih.blogspot.com

Wednesday, December 27, 2006

Sambutan tahun baru

KUALA LUMPUR, 28 Dis (Hrkh) - Sambutan tahun baru yang dipenuhi pelbagai pesta dan konsert saban tahun digesa dibatalkan kerana tidak mendatangkan sebarang faedah di samping sebagai langkah menghormati nasib malang sebilangan rakyat Malaysia yang dilanda musibah.

Ketua Pemuda PAS, Salahudin Ayub berkata, sambutan tahun baru yang berorientasikan hiburan seperti konsert dan acara pesta seperti menunggu detik tahun baru sepatutnya dibatalkan kerana mencetuskan permasalahan sosial, membuang masa dan wang.

"Di samping itu kita perlu menghormati sebilangan besar rakyat Malaysia yang kini berada dalam kesusahan," katanya yang juga ahli Parlimen Kubang Kerian.

Selain itu kekerapan musibah seperti bencana alam, pertambahan dan peningkatan masalah sosial dan jenayah adalah rentetan kejadian-kejadian sebilangan rakyat yang sering melakukan perlanggaran agama dan nilai-nilai moral, katanya.

"Adalah lebih baik pada detik tahun baru ini, difikirkan aktiviti yang lebih berfaedah, bermunajat kepada Allah dan mengadakan majlis-majlis doa selamat di setiap masjid dan surau seluruh negara dan bukannya berpesta sampai pagi," katanya ketika dihubungi oleh Harakahdaily.

"Dan bukan tahun ini sahaja malah tahun-tahun akan datang tidak perlu lagi diadakan acara sambutan tahun baru ini," katanya lagi.

Kesal pemimpin hadir konsert tahun baru

Malah kata Salahuddin, turut dikesali konsert dan acara pesta tersebut seringkali dihadiri dan disokong oleh pemimpin-pemimpin kerajaan.

"Beginikah sikap pemimpin yang nak membawa rakyat dan kempennya mencegahnya gejala sosial dan jenayah. Mana adab sopan mereka?" katanya.

Selain itu kekerapan musibah seperti bencana alam , pertambahan dan peningkatan masalah sosial dan jenayah adalah rentetan kejadian-kejadian sebilangan rakyat yang sering melakukan perlanggaran agama dan nilai-nilai moral melalui aktiviti-aktiviti tidak sihat seperti konsert dan acara pesta hiburan yang melampau.

Natijah konsert katanya, mengakibatkan ramai remaja terjerumus kepada perlakuan sumbang, berpeleseran, berzina, berkhalwat malah menggalakkan kejadian lumba haram mat rempit yang membahayakan nyawa dan keselamatan pengguna jalan raya dan menyusahkan pihak polis.

Kajian rambang di pusat-pusat pemulihan akhlak mendapati kebanyakan penghuni dan remaja yang mengandung anak di luar nikah, pengguguran dan terjebak dengan aktiviti yang tidak bermoral memberi respons puncanya adalah kerana melibatkan diri dengan aktiviti konsert dan pesta tahun baru.

Laporan juga mendapati sering kali sewaktu tengah malam dan selepas konsert, ramai melakukan perbuatan terkutuk di kawasan-kawasan berhampiran konsert dan di taman-taman bunga untuk melakukankan maksiat pada malam tahun baru.

Bagi mereka, menurut kajian itu, pada malam tersebut adalah 'acara bebas' yang sukar dan tidak mampu dihidu perbuatannya oleh pihak berkuasa seperti jabatan agama Negeri, pihak berkuasa tempatan dan polis.

Kondom dan arak

Tahun lalu seperti kebiasaan pada tahun-tahun yang lain juga, pelbagai media melaporkan tinjauan selepas konsert-konsert tersebut khususnya di Dataran Merdeka dan di KLCC, ditemui kondom dan tin serta botol-botol minuman keras bersepah di merata-rata tempat yang menggambarkan perlakuan-perlakuan tidak berakhlak para peserta mahupun para remaja.

Manakala turut dilaporkan pada sebelah paginya ramai yang tidur seperti 'homeless' kerana tiada tempat tinggal sementara menunggu bas untuk menuju pulang ke destinasi masing-masing selepas penat berpesta yang menjejas dan memburuk imej negara di mata dunia terutama kepada pelancong-pelancong yang datang ke negara ini.

Salahudin berkata, masyarakat seluruh negara sewajarnya menghormati rakan-rakan dan penduduk di negeri lain yang menyambut tahun baru mereka tidak seperti orang lain.

"Sibuk berpesta, berhibur, menari dan menyanyi menyambut tahun baru sedangkan ramai orang lain menyambut tahun baru dengan suasana yang tidak ceria dan dirudung malang," katanya.

Selain itu menurut satu sumber acara bunga api pada malam tahun baru yang dibiayai kerajaan menelan belanja ratusan ribu ringgit sewaktu negara mengalami masalah kenaikan harga barangan serta ekonomi yang meruncit, sewajarnya tindakan membazitrkan wang tersebut tidak patut dilakukan, katanya.

"Malah sambutan seperti itu juga dilarang oleh agama kerana puncanya boleh mengakibatkan perlakuan sumbang dan membazirkan wang," kata Salahudin.

Gotong-royong perdana Pemuda PAS

Ketika dihubungi, Salahuddin dalam rangka lawatan menghadiri gotong royong Perdana di bandar Segamat, Johor.

"Walaupun ada sesetengah tempat banjir surut, kerja-kerja operasi pemulihan masih dijalankan," katanya yang telah mengarahkan Unit Amal PAS seluruh negara untuk terus membantu.

"Malah kerja-kerja pemulihan sebenarnya lebih besar daripada operasi pemindahan dan saya berharap semua dapat mengembleng tenaga membantu mangsa dalam situasi sulit ini," katanya.

"PAS juga akan melakukan yang terbaik untuk membantu meringan beban mangsa-mangsa yang dilanda musibah banjir ini," katanya lagi. - lanh

http://harakahdaily.net/v061/index.php?option=com_content&task=view&id=5836&Itemid=85

Friday, December 22, 2006

UiTM Graduates More Employable

UiTM Graduates More Employable
Now I do not want to get into a slanging war with Universiti Teknologi Mara (UiTM) students and alumni with this post, there's enough of that sort going on in my earlier popular post on "UiTM - World Class?". Please also note that this post is not a slight at UiTM graduates as I'm fully convinced that there are good students and well qualified graduates from the University.

I thought it would be interesting to highlight the contradiction between the statement issued by the Minister of Higher Education, Datuk Mustapa Mohamed yesterday, versus a set of statistics released by the Deputy Minister of Human Resources, Datuk Abdul Rahman Bakar (blogged here) back in July this year.

According to Datuk Mustapa, UiTM graduates are "more employable than other local graduates due to their strong command of English."

He said the curriculum in UiTM stressed on the importance of English to produce students proficient in the language.

“The employment rate of UiTM graduates is generally higher than that of other local graduates because they are good in English"... Besides, Mustapa added, the university offered hands-on courses that were relevant to the job market. He said the students were taught entrepreneurial skills.

However, based on statistics released by Datuk Abdul Rahman earlier on the unemployed graduates in Malaysia, the breakdown showed UiTM as having the highest number of unemployed graduates, as shown in the table below.
In fact, UiTM has more than double the number of unemployed graduates (16.2%) relative to the next highest university Universiti Utara Malaysia (UUM) (7.6%). Even after taking into account the significantly larger campus in UiTM, the statistics by Datuk Mustapa's fellow colleague doesn't provide any justification at all to his claim that UiTM graduates are more employable than those of other local universities.

There has been a spate of Ministers contradicting and correcting each other in and out of the Parliament recently - Datuk Seri Hishammuddin Hussein and his deputy, Datuk Noh Omar on new Chinese primary schools, Deputy Finance Minister Datuk Dr Awang Adek and Minister in Prime Minister's Department, Datuk Effendi Norwawi and others which I can't recall off-hand. Are they just displaying their incompetency as well as the unreliability of government data and statistics, or are they misleading the Parliament and the public?

On a separate note, it is worth noting that UiTM appears to have quietly removed its proclaimation that it's a "world class university" from its website, as blogged earlier, but have since termed itself as a "world class socio-economic achievement", which is probably less controversial. I've also been informed that UiTM has changed its vision to "become World Class University by 2020", according to reader and student, Khairul Idzwan, although I can't seem to find that reference on the website. At the very least, it appears that the UiTM administration is now a fair bit more grounded in its proclaimations, irrespective of whether my earlier blog post has played a part in the change. ;)
http://educationmalaysia.blogspot.com/

Sunday, December 03, 2006

SEPI 2 MINGGU

Nampaknya saya terpaksa menangguhkan pelayaran saya selama 2 minggu. Kenapa? kerana saya perlu menjalni latihan intensif bakal komander Bomba (anjuran universiti ) jadi selepas itu barulah saya dapat bersama anda semua....
link menarik pelayarqn kali ini

mengenai wanita
http://najlah.blogspot.com/

mengenai dunia buku
http://jiwarasa.blogspot.com/

tazkirah
http://aziziabdullah.blogspot.com/
http://lingkardiri.blogspot.com/

Friday, December 01, 2006

RUFAQA+tv 3+khutbah jumaat

dalam perjalanan ke masjid saya terima satu ilham untuk bina jaringan mengenai khutbah jumaat dan mengenai masjid. Tajuk khutbah di kampung saya mengenai menghidupkan peranan masjid. khatib (muda ,lulusan azhar) turut menangis semasa baca khutbah itu. saya kira tentunya dia 'terasa' dengan isi khutbah (teks jabatan agama johor) yang memberi keinsafan .
saya terfikir kalaulah kita warga blogger dapat berganding bahu, sama-sama berkongsi isi khutbah di masjid masing masing , tentunya khutbah itu menjadi satu majlis ilmu yang bermutu dan berkesan.(ye la nak cerita mengenai khutbah tu kita mesti dengar dan fahami isi khutbah tu;tak tido)
lagi satu kita ceritakan mengenai masjid di kawasan kita. supaya kita ada jaringan melalui masjid dan boleh contohi masjid yang lebh baik.


tahniah , Tv 3 nampaknya buat perubahan. pagi ini saya tonton berita dan Norazlina a'la dah pakai tudung. tahniah n doakan semoga kekal bertudung

Baru-baru ni heboh pasal al-Arqam cuba dihidupkan atas nama Rufaqa'.
Di sini saya selitkan link utk tahu lebih lanjut mengenai kesesatannya.
http://rufaqa-sesat.blogspot.com/

Thursday, November 30, 2006

Menempuh 1 Disember

Alhamdulillah ,pejam celik rupa-rupanya kita telah sampai ke penghujung bulan mengikut tahun masihi. Namun jika difikirkan , masih banyak yang belum kita laksanakan. Banyak lagi perkara yang kita nak laksanakan, baik yang telah dirancang mahupun tidak dirancang.

Tetapi apa yang ingin saya nukilkan disini adalah kepekaan kita terhadap nasib umat Islam sepanjang tahun 2006. Tidak perlu saya huraikan lebih lanjut kerana kita sendiri mampu untuk melakukan koreksi diri dengan menggunakan kebijaksanaan yang kita miliki.
adakah kita layak digelar saudara seIslam dengan perlakuan kita sepanang tahun ini.

Sekadar pandangan, apalah salahnya jika kita membaca surah al fatihah untuk saudara kita diseluruh dunia, tua atau muda ,baru memeluk islam atau yang lama , dan semua insan yang pernah mengakui keesaan Allah dan nabi Muhammad.

Friday, November 24, 2006

Bagaimana Melayari Internet dengan Kebersamaan Allah

Oleh: Al-Ustaz Dr Fathi Yakan

Internet merupakan senjata bermata dua, satu pendekatan yang mempunyai dua wajah yang bertentangan; dalamnya ada unsur peruntuh dan membina, memati dan menghidup, petunjuk hidayah dan godaan. Dan cara bagaimana ia digunakan adalah garis pemisah antara keduannya.

Saya harap tidak keterlaluan jika saya katakan bahawa internet mempunyai daya tarikan, keberkesanan, mudah dicapai, dilayari dan bersifat intraktif yang menjadikan ia alat terkini dari segi kesan dan ruang cakupan. Ia melitupi bola bumi tanpa sekatan dan tandingan. Ia boleh dijadikan mimbar untuk orang Islam menegakkan hujjah keatas manusia dengan menyebarkan Islam dan menyampaikan dakwahnya kepada seluruh manusia diseluruh pelusuk alam.

Benarlah seperti firman Allah taala yang bermaksud: Supaya tidak menjadi hujjah manusia terhadap Allah selepas kedatangan rasul-rasul.(an Nisa’ 165)
Dan firman maksudnya: dan begitulah kami jadikan kamu umat pertengahan supaya kamu menjadi saksi kepada manusia dan rasul menjadi saksi keatas kamu.(al Baqarah 143).

Walaubagaimana pun kita sepatutnya mengetahui bahawa internet dipenuhi dengan segala jenis unsur yang rosak dan merosakkan dan syaitan jin dan manusia memuatkan rangkaian ini dengan berjuta-juta laman yang canggih dan cekap dengan seni mempedaya dan menyesatkan satu perkara yang tidak diterima akal dan sukar digambarkan.

Satu kajian yang disiarkan oleh majalah Time menunjukkan bahawa bilangan laman seks mencecah angka 650 juta laman pada tahun 1998 dan dianggarkan akan sampai 8 bilion pada tahun 2002. Salah satu laman ini memiliki 300,000 gambar lucah dan telah dihantar sebanyak lebih satu bilion kali???.

Manakala dari sudut perniagaan, satu kajian menunjukan bahawa sejumlah pembelian bahan lucah melalui internet mencecah 18 bilion dolar. Ini mendorong pengkaji Steve Waters berkata dalam komentarnya terhadap betapa besarnya bencana ini: "biasanya pelayaran internet bermula dengan cuba-cuba, kemudian ia berlarutan menjadi penagihan dan disertai dengan kesudahan yang sangat merbahaya".

Semua itu perlu diletakkan dalam perkiraan apabila berbicara tentang internet, melayarinya dan berintraksi dengannya.

1. Sesaorang yang ingin melayari internet wajar membersihkan niat dengan betul dengan menetapkan terlebih dahulu tujuan sebelum memasukinya.
2. Mereka yang melayari internet sebagai alat untuk berhibur akan lupa diri dan tanpa disedari terheret ke pada kamatianya dalam keadaan ia tidak menyedarinya.
3. Kemudian duduk dihadapan internet dalam tempoh yang lama akan mensia-siakan pusingan hidup seluruhnya. Mereka akan mengabaikan tugas dan tuntutan untuk mendapat kebahagiaan didunia dan akhirat. Inilah kerugian yang nyata. Disamping ia juga akan menyebabkan kehilangan daya tumpuan dan menyebabkan akal bercelaru.
Adapun apabila kita melayari gelombang internet yang ganas dalam laut yang gelap dan dalam keadaan ditemani Allah bererti kita hidup dengan kebersamaan ini dalam setiap suasana, urusan, kondisi dan setiap masa.

Rasa kebersamaan ini bukan suatu yang boleh dipinjam-pinjam atau direka-reka… kerana itu, ia bukan datang dan pergi sebaliknya satu keadaan yang tetap terus berkembang tanpa kurang atau surut.

Merialisasikan kebersamaan ini sesaorang perlu mengekang nafsunya daripada hawa dan penyesatannya. Hawa harus ditolak dan nafsu sepatutnya dibimbing untuk menaiki tangga kesempurnaan, meninggalkan kealpaan, mengalahkan waswas dan mengatasi ajakan-ajakan syahwat. Kemudian dengan memelihara keberterusan "muraqabah" dan "muhasabah" serta mengekang nafsu dengan keazaman dan dipaksa dengan pekerti dan akhlak yang mulia, apa lagi dizaman yang penuh dengan fitnah dan keajaiban ini.

Seperti yang pernah diberi amaran dan ingatan oleh Rasulullah s.a.w secara khusus mengenai zaman tersebut dimana orang yang siuman menjadi bingun, perkara makruf menjadi mungkar dan mungkar menjadi makruf sebagaimana sabda Rasulullah s.a.w yang bermaksud: apabila dunia hampir kiamat akan berlaku fitnah seperti potongan malam yang gelap, fitnah seperti kepulan asap, dalam situasi itu hati manusia akan mati seperti matinya tubuh badan mereka, mereka beriman pada pagi hari dan kufur pada waktu petang, beriman pada waktu petang dan kufur pada waktu pagi antara mereka ada puak yang menjual akhlak dan agama mereka dengan habuan dunia.(hadis riwayat Ahmad)

Kita berdoa kepada Allah supaya memberikan kita kesihatan dan berterusan dalam keadaan afiat serta bersyukur dengan afiat tersebut. Kita mohon dari Allah kebaikan masa dan kebaikan mereka yang hidup pada zaman ini. Kita berlindung kepada Allah dari kejahatan zaman dan kejahatan mereka yang hidup pada zaman ini. Allah maafkanlah kami, ampunkanlah kami, perelokkan kesudahan kami dan pastikan pada waktu kematian kami, kami sedang melakukan kebaikan dan amal soleh. Amin ya rabba al alamin.
http://www.dakwah.info/v2/?p=247#more-247

Wednesday, November 22, 2006

SAYA ADA LAP TOP BARU......

Marilah kita sama-sama renungkan kisah ini.....
semoga memberi pengajaran........

Wednesday, November 08, 2006

SOALAN EXAM

just ikut link ni utk dapatlkan exam paper. aku dah ade koleksi tapi nak distribute tak sempat... kalau nak cari aku la...
guna opac ni senang je...
lagipun kalau aku sorang je yang ade ... tapi tak abis buat....dan sorokkan drp kawan2 ....aku jugak yg rugi....(takpelah kalau aku tak perform well pun sekurangnya aku tolong orang lain supaya perform well)
boleh la tumpang gumbira&syukur

doakan kita dapat siapkan past year paper dan membantu kita.
http://digital.ptar.uitm.edu.my/

lagi




raya 4













RAYA 3








RAYA LAGI








Tuesday, November 07, 2006

Tuesday, October 03, 2006

Thursday, August 17, 2006

ISLAMIC WORLD

1. ISLAMIC WORLD
 MASJID
YADIM
CIKGU
LIBRARY USM

ENJIN CARIAN

1. KATA PUJANGGA
2. GOOGLES
3 TELAGA BIRU
4. TUTOR UTUSAN
5.JAIM
6MAP TRAINING
7. CRAWLER
8 YAHOO
9 SEJARAH MELAYU
ONLINE ARTIKEL
NANO MASTER
INSTITUT NANO
NANI FORUM
library usm
pusat racun usm
akhbar pendidikan
katalog buku
pasal kindness

Saturday, August 12, 2006

2,500 mohon dana penyelidikan

2,500 mohon dana penyelidikan

KEMENTERIAN Sains Teknologi dan Inovasi menerima kira-kira 2,500 permohonan daripada penyelidik institusi pengajian tinggi (IPT) untuk mendapatkan dana bagi melaksanakan projek penyelidikan dan pembangunan (R&D) berasaskan sains dan teknologi (S&T) sebaik kerajaan mengumumkan peruntukan RM3 bilion dalam Rancangan Malaysia Kes embilan (RMK-9).

Setiausaha Parlimen kementerian berkenaan, Datuk Dr Mohd Ruddin Abdul Ghani, berkata dana itu turut mendapat sambutan menggalakkan daripada syarikat tempatan apabila menerima 281 permohonan.Katanya, permohonan itu membabitkan penyelidikan dalam bidang S&T dengan pengkhususan teknologi maklumat dan komunikasi, bioteknologi, nano teknologi dan prototaip lanjutan.Selain itu, beliau berkata, kementerian juga memperuntukkan sejumlah RM100 juta bagi menjayakan program membina modal insan. “Dana ini disediakan sejajar hasrat kerajaan melahirkan tenaga profesional yang berdaya saing sebagai bakal pemimpin negara pada masa depan.“Peruntukan ini juga terbuka kepada pelajar mahupun pegawai untuk melanjutkan pengajian peringkat sarjana atau doktor falsafah di IPT tempatan mahupun luar negara,” katanya pada sidang akhbar selepas merasmikan Pesta ICT Universiti Kebangsaan Malaysia (UKM) di Bangi, semalam. Hadir sama Pengarah Pusat Kokurikulum UKM, Dr Jamaludin Badushah.Mohd Ruddin berkata, permohonan berkenaan dibuka bagi kajian jangka pendek dan panjang membabitkan tempoh dua hingga lima tahun dengan dana antara RM2 juta hingga RM40 juta.Katanya, dana yang disediakan dibahagikan kepada tiga kategori iaitu RM1.3 bilion untuk sains, teknologi (RM1.2 bilion) dan inovasi (RM200 juta) .Dana sains, diperuntukkan bagi kerja penyelidikan asas seperti menjana teknologi baru, manakala teknologi pula menjurus kepada pembiayaan memasarkan sesuatu produk iaitu prototaip yang sudah dihasilkan dan menunggu untuk dikomersialkan.“Bagi memastikan hasil penyelidikan dapat dikomersialkan di pasaran tempatan mahupun antarabangsa, kerajaan menggalakkan kerjasama antara penyelidik di IPT dengan pakar swasta. “Gabungan dua pihak ini akan membentuk kerjasama padu dalam memastikan teknologi yang dihasilkan dimanfaatkan pengguna peringkat global.“Permohonan dana berdasarkan merit projek dan hasil penyelidikan. Jika sesuatu penyelidikan mempunyai nilai komersial tinggi dan berpotensi dibangunkan, kerajaan akan menaja keseluruhan kos projek berkenaan. Ia sebagai menyokong usaha penyelidik menghasilkan jenama Malaysia,” katanya.Mohd Ruddin berkata, penyelidik pula perlu memastikan produk mereka berkualiti untuk pasaran luar negara. Beliau berkata, setakat ini pihaknya sudah meneliti semua permohonan dan keputusan akan diumumkan tidak lama lagi.Katanya, dana penyelidikan ini juga terbuka kepada mereka yang menjalankan kajian dalam bidang kimia, fizik mahupun perubatan.
http://www.bharian.com.my/m/BHarian/Thursday/Pendidikan/20060803090914/Article/

Nanotechnology

From Wikipedia, the free encyclopedia
Jump to: navigation, search


Molecular gears from a NASA computer simulation.
Nanotechnology is the design, characterization, production and application of structures, devices and systems by controlling shape and size at the nanoscale. Eight to ten atoms span one nanometer (nm). The human hair is approximately 70,000 to 80,000 nm thick. Nanotechnology has been put to practical use for a wide range of applications, including stain resistant pants, enhanced tire reinforcement and improved suntan lotion.
Nanotechnology should really be called “nanotechnologies”: There is no single field of nanotechnology. The term broadly refers to such fields as biology, physics or chemistry, any scientific field, or a combination thereof, that deals with the deliberate and controlled manufacturing of nanostructures.The United States' National Nanotechnology Initiative website defines it as follows: "Nanotechnology is the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel applications." The Woodrow Wilson International Center for Scholars' Project on Emerging Nanotechnologies has developed a plan to address the growing risks associated with nanotechnology, involving the EPA, NIH, NIST and NIOSH [1].
Nanoscience is the study of phenomena and manipulation of material at the nanoscale, in essence an extension of existing sciences into the nanoscale. Nanoscience is the world of atoms, molecules, macromolecules, quantum dots, and macromolecular assemblies, and is dominated by surface effects such as Van der Waals force attraction, hydrogen bonding, electronic charge, ionic bonding, covalent bonding, hydrophobicity, hydrophilicity, and quantum mechanical tunneling, to the virtual exclusion of macro-scale effects such as turbulence and inertia. For example, the vastly increased ratio of surface area to volume opens new possibilities in surface-based science, such as catalysis.
The ongoing quest for miniaturization has resulted in tools such as the atomic force microscope (AFM) and the scanning tunneling microscope (STM). Combined with refined processes such as electron beam lithography, these instruments allow us to deliberately manipulate and manufacture nanostructures. Engineered nanomaterials, either by way of a top-down approach (a bulk material is reduced in size to nanoscale pattern) or a bottom-up approach (larger structures are built or grown atom by atom or molecule by molecule), go beyond just a further step in miniaturization. They have broken a size barrier below which quantization of energy for the electrons in solids becomes relevant. The so-called “quantum size effect” describes the physics of electron properties in solids with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, it becomes dominant when the nanometer size range is reached. Materials reduced to the nanoscale can suddenly show very different properties compared to what they show on a macroscale. For instance, opaque substances become transparent (copper); inert materials become catalysts (platinum); stable materials turn combustible (aluminum); solids turn into liquids at room temperature (gold); insulators become conductors (silicon).
A second important aspect of the nanoscale is that the smaller a nanoparticle gets, the larger its relative surface area becomes. Its electronic structure changes dramatically, too. Both effects lead to greatly improved catalytic activity but can also lead to aggressive chemical reactivity.
The fascination with nanotechnology stems from these unique quantum and surface phenomena that matter exhibits at the nanoscale, making possible novel applications and interesting materials.

History of Use


This animation of a rotating Carbon nanotube shows its 3D structure.
The first mention of some of the distinguishing concepts in nanotechnology (but predating use of that name) was in "There's Plenty of Room at the Bottom," a talk given by physicist Richard Feynman at an American Physical Society meeting at Caltech on December 29, 1959. Feynman described a process by which the ability to manipulate individual atoms and molecules might be developed, using one set of precise tools to build and operate another proportionally smaller set, so on down to the needed scale. In the course of this, he noted, scaling issues would arise from the changing magnitude of various physical phenomena: gravity would become less important, surface tension and Van der Waals attraction would become more important, etc. This basic idea appears feasible, and exponential assembly enhances it with parallelism to produce a useful quantity of end products.
The term "nanotechnology" was defined by Tokyo Science University Professor Norio Taniguchi in a 1974 paper (N. Taniguchi, "On the Basic Concept of 'Nano-Technology'," Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.) as follows: "'Nano-technology' mainly consists of the processing of, separation, consolidation, and deformation of materials by one atom or one molecule." In the 1980s the basic idea of this definition was explored in much more depth by Dr. Eric Drexler, who promoted the technological significance of nano-scale phenomena and devices through speeches and the books Engines of Creation: The Coming Era of Nanotechnology and Nanosystems: Molecular Machinery, Manufacturing, and Computation, (ISBN 0-471-57518-6), and so the term acquired its current sense.
More broadly, nanotechnology includes the many techniques used to create structures at a size scale below 100 nm, including those used for fabrication of nanowires, those used in semiconductor fabrication such as deep ultraviolet lithography, electron beam lithography, focused ion beam machining, nanoimprint lithography, atomic layer deposition, and molecular vapor deposition, and further including molecular self-assembly techniques such as those employing di-block copolymers. However, all of these techniques preceded the nanotech era, and are extensions in the development of scientific advancements rather than techniques which were devised with the sole purpose of creating nanotechnology or which were results of nanotechnology research.
Nanotechnology and nanoscience got started in the early 1980s with two major developments; the birth of cluster science and the invention of the scanning tunneling microscope (STM). This development led to the discovery of fullerenes in 1986 and carbon nanotubes a few years later. In another development, the synthesis and properties of semiconductor nanocrystals was studied. This led to a fast increasing number of metal oxide nanoparticles of quantum dots.
Technologies currently branded with the term 'nano' are little related to and fall far short of the most ambitious and transformative technological goals of the sort in molecular manufacturing proposals, but the term still connotes such ideas. Thus there may be a danger that a "nano bubble" will form from the use of the term by scientists and entrepreneurs to garner funding, regardless of (and perhaps despite a lack of) interest in the transformative possibilities of more ambitious and far-sighted work. The diversion of support based on the promises of proposals like molecular manufacturing to more mundane projects also risks creating a perhaps unjustifiedly cynical impression of the most ambitious goals: an investor intrigued by molecular manufacturing who invests in 'nano' only to find typical materials science advances result might conclude that the whole idea is hype, unable to appreciate the bait-and-switch made possible by the vagueness of the term. On the other hand, some have argued that the publicity and competence in related areas generated by supporting such 'soft nano' projects is valuable, even if indirect, progress towards nanotechnology's most ambitious goals.
The National Science Foundation (NSF), a major funding instrument for nanotechnology, commissioned Professor David M. Berube to conduct a comprehensive survey of the field. His conclusions are documented in an extensively footnoted monograph “Nano-Hype: The Truth Behind the Nanotechnology Buzz.” This published study (with a forward by Mihail Roco, head of the NNI) concludes that much of what is sold as “nanotechnology” is in fact a recasting of straightforward materials science, which is leading to a “nanotech industry built solely on selling nanotubes, nanowires, and the like” which will “end up with a few suppliers selling low margin products in huge volumes." This is exemplified by companies such as Nanosys, which have shifted their focus from nanotechnology to more conventional materials science.
[edit]
Definition of nanostructures
In describing nanostructures we need to differentiate between the number of dimensions of the nanoscale. Nanotextured surfaces are one dimension on the nanoscale, i.e., only the thickness of the surface of an object is between 0.1 and 100 nm. Nanotubes are two dimensions on the nanoscale, i.e., the diameter of the tube is between 0.1 and 100nm; its length could be much greater. Finally, spherical nanoparticles are three dimensions on the nanoscale, i.e., the particle is between 0.1 and 100 nm in each spatial dimension. The terms nanoparticles and ultrafine particles (UFP) often are used synonymously although UFP can reach into the micron range.
[edit]
Tools and Techniques
Nanoscience and nanotechnology only became possible in the 1980s with the development of the first tools to measure and make nanostructures.
The atomic force microscope (AFM) and the Scanning Tunneling Microscope (STM) are two early versions of scanning probes that launched nanotechnology. There are other types of scanning probe microscopy, all based on the idea of the STM, that make it possible to see structures at the nanoscale.
The tip of scanning probes can also be used to manipulate nanostructures (a process called positional assembly). However, this is a very slow process. This led to the development of various techniques of nanolithography such as dip pen nanolithography, electron beam lithography or nanoimprint lithography.
Lithography is a top-down fabrication technique where a bulk material is reduced in size to nanoscale pattern.
In contrast, bottom-up techniques build or grow larger structures atom by atom or molecule by molecule. These techniques include chemical synthesis, self-assembly and positional assembly.
[edit]
Applications and potential benefits
With nanotechnology, a large set of materials with distinct properties (optical, electrical, or magnetic) can be fabricated. Nanotechnologically improved products rely on a change in the physical properties when the feature sizes are shrunk. Nanoparticles for example take advantage of their dramatically increased surface area to volume ratio. Their optical properties, e.g. fluorescence, become a function of the particle diameter. When brought into a bulk material, nanoparticles can strongly influence the mechanical properties, such as the stiffness or elasticity. Example, traditional polymers can be reinforced by nanoparticles resulting in novel materials e.g. as lightweight replacements for metals. Therefore, an increasing societal benefit of such nanoparticles can be expected.
Such nanotechnologically enhanced materials will enable a weight reduction accompanied by an increase in stability and an improved functionality.
[edit]
Medicine
The biological and medical research communities have exploited the unique properties of nanomaterials for various applications (e.g., contrast agents for cell imaging and therapeutics for treating cancer). Terms such as biomedical nanotechnology, bionanotechnology, and nanomedicine are used to describe this hybrid field.
Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications.
Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, therapy, and drug-delivery vehicles.
[edit]
Diagnostics
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Biological tests measuring the presence or activity of selected substances become quicker, more sensitive and more flexible when certain nanoscale particles are put to work as tags or labels. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.
[edit]
Drug delivery
The overall drug consumption and side-effects can be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. This highly selective approach reduces costs and human suffering. An example can be found in dendrimers and nanoporous materials. They could hold small drug molecules transporting them to the desired location. Another vision is based on small electromechanical systems: NEMS are being investigated for the active release of drugs. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells.
A targeted or personalized medicine reduces the drug consumption and treatment expenses resulting in an overall societal benefit by reducing the costs to the public health system.
[edit]
Tissue engineering
Nanotechnology can help to reproduce or to repair damaged tissue. This so called “tissue engineering” makes use of artificially stimulated cell proliferation by using suitable nanomaterial-based scaffolds and growth factors. Tissue engineering might replace today’s conventional treatments, e.g. transplantation of organs or artificial implants. On the other hand, tissue engineering is closely related to the ethical debate on human stem cells and its ethical implications.
[edit]
Chemistry and environment
Chemical catalysis and filtration techniques are two prominent examples where nanotechnology already plays a role. The synthesis provides novel materials with tailored features and chemical properties e.g. nanoparticles with a distinct chemical surrounding (ligands) or specific optical properties. In this sense, chemistry is indeed a basic nanoscience. In a short-term perspective, chemistry will provide novel “nanomaterials” and in the long run, superior processes such as “self-assembly” will enable energy and time preserving strategies.
In a sense, all chemical synthesis can be understood in terms of nanotechnology, because of its ability to manufacture certain molecules. Thus, chemistry forms a base for nanotechnology providing tailor-made molecules, polymers etc. and furthermore clusters and nanoparticles.
[edit]
Catalysis
Chemical catalysis benefits especially from nanoparticles, due to the extremely large surface to volume ratio. The application potential of nanoparticles in catalysis ranges from fuel cell to catalytic converters and photocatalytic devices. Catalysis is also important for the production of chemicals.
[edit]
Filtration
A strong influence of nanochemistry on waste-water treatment, air purification and energy storage devices is to be expected. Mechanical or chemical methods can be used for effective filtration techniques. One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”). Nanofiltration is mainly used for the removal of ions or the separation of different fluids. On a larger scale, the membrane filtration technique is named ultrafiltration, which works down to between 10 and 100 nm. One important field of application for ultrafiltration is medical purposes as can be found in renal dialysis.
Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water by making use of magnetic separation techniques. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods.
[edit]
Energy
The most advanced nanotechnology projects related to energy are: storage, conversion, manufacturing improvements by reducing materials and process rates, energy saving e.g. by better thermal insulation, and enhanced renewable energy sources.
[edit]
Reduction of energy consumption
A reduction of energy consumption can be reached by better insulation systems, by the use of more efficient lighting or combustion systems, and by use of lighter and stronger materials in the transportation sector. Currently used light bulbs only convert approximately 5% of the electrical energy into light. Nanotechnological approaches like LEDs (Light-emitting diodes) or QCAs (Quantum Caged Atoms) could lead to a strong reduction of energy consumption for illumination.
[edit]
Increasing the efficiency of energy production
Today's best solar cells have layers of two different semiconductors stacked together to absorb light at different energies but they still only manage to use 30 percent of the Sun's energy. Commercially available solar cells have much lower efficiencies (less than 20%). Nanotechnology can help to increase the efficiency of light conversion by specifically designed nanostructures. The degree of efficiency of combustion engines is not higher than 15-20% at the moment. Nanotechnology can improve combustion by designing specific catalysts with maximized surface area. Also, scientists have recently developed tetrad-shaped nanoparticles that, when applied to a surface, instantly transform it into a solar collector. It only has about a 15% efficiency level at the moment, but that is expected to rise, and it's current value is that it can turn any surface (such as rooftops and even blankets) into mini solar plants.
[edit]
The use of more environmentally friendly energy systems
An example for an environmentally friendly form of energy is the use of fuel cells powered by hydrogen, which is ideally produced by renewable energies. Probably the most prominent nanostructured material in fuel cells is the catalyst consisting of carbon supported noble metal particles with diameters of 1- 5 nm. Suitable materials for hydrogen storage contain a large number of small nanosized pores. Therefore many nanostructured materials like nanotubes, zeolites or alanates are under investigation.
Nanotechnology can contribute to the further reduction of combustion engine pollutants by nanoporous filters, which can clean the exhaust mechanically, by catalytic converters based on nanoscale noble metal particles or by catalytic coatings on cylinder walls and catalytic nanoparticles as additive for fuels.
[edit]
Recycling of batteries
Because of the relatively low energy density of batteries the operating time is limited and a replacement or recharging is needed. The huge number of spent batteries and accumulators represent a disposal problem. The use of batteries with higher energy content or the use of rechargeable batteries or supercapacitors with higher rate of recharging using nanomaterials could be helpful for the battery disposal problem.
[edit]
Information and Communication
Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of integrated circuits is already at the nanoscale (50 nm and below) regarding the gate length of transistors in CPUs or DRAM devices.
[edit]
Novel semiconductor devices
An example of such novel devices is based on spintronics.The dependence of the resistance of a material (due to the spin of the electrons) on an external field is called magnetoresistance. This effect can be significantly amplified (GMR – Giant Magneto-Resistance) for nanosized objects, for example when two ferromagnetic layers are separated by a nonmagnetic layer, which is several nanometers thick (e.g. Co-Cu-Co). The GMR effect has led to a strong increase in the data storage density of hard disks and made the gigabyte range possible. The so called tunneling magnetoresistance (TMR) is very similar to GMR and based on the spin dependant tunneling of electrons through adjacent ferromagnetic layers. Both the GMR- and the TMR-effect can be used to create a non-volatile main memory for computers, such as the so called magnetic random access memory or MRAM.
[edit]
Novel optoelectronic devices
In the modern communication technology traditional analog electrical devices are increasingly replaced by optical or optoelectronic devices due to their enormous bandwidth and capacity, respectively. Two promising examples are photonic crystals and quantum dots.
Photonic crystals are materials with a periodic variation in the refractive index with a lattice constant that is half the wavelength of the light used. They offer a selectable band gap for the propagation of a certain wavelength, thus they resemble a semiconductor, but for light or photons instead of electrons.
Quantum dots are nanoscaled objects, which can be used, among many other things, for the construction of lasers. The advantage of a quantum dot laser over the traditional semiconductor laser is that their emitted wavelength depends on the diameter of the dot. Quantum dot lasers are cheaper and offer a higher beam quality than conventional laser diodes.
[edit]
Displays
The production of displays with low energy consumption could be accomplished using carbon nanotubes. CNTs can be electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for field emission displays (FED). The principle of operation resembles that of the cathode ray tube, but on a much smaller length scale.
[edit]
Quantum Computer
Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms.
[edit]
Consumer goods
Nanotechnology is already impacting the field of consumer goods, providing products with novel functions ranging from easy-to-clean to scratch-resistant. Modern textiles are wrinkle-resistant and stain-repellent; in the mid-term clothes will become “smart”, through embedded “wearable electronics”. Already in use are different nanoparticle improved products. Especially in the field of cosmetics such novel products have a promising potential.
[edit]
Foods
Nanotechnology can be applied in the production, processing, safety and packaging of food. A nanocomposite coating process could improve food packaging by placing anti-microbial agents directly on the surface of the coated film. Nanocomposites could increase or decrease gas permeability of different fillers as is needed for different products. They can also improve the mechanical and heat-resistance properties and lower the oxygen transmission rate. Research is being performed to apply nanotechnology to the detection of chemical and biological substances for sensing biochemical changes in foods.
[edit]
Household
The most prominent application of nanotechnology in the household is self-cleaning or “easy-to-clean” surfaces on ceramics or glasses. Nanoceramic particles have improved the smoothness and heat resistance of common household equipment such as the flat iron.
[edit]
Optics
The first sunglasses using protective and antireflective ultrathin polymer coatings are on the market. For optics, nanotechnology also offers scratch resistant coatings based on nanocomposites.
[edit]
Textiles
The use of engineered nanofibers already makes clothes water- and stain-repellent or wrinkle-free. Textiles with a nanotechnological finish can be washed less frequently and at lower temperatures. Nanotechnology has been used to integrate tiny carbon particles membrane and guarantee full-surface protection from electrostatic charges for the wearer.
[edit]
Sports
Tennis rackets with carbon nanotubes have an increased torsion and flex resistance. The rackets are more rigid than current carbon rackets and pack more power. Long-lasting tennis-balls are made by coating the inner core with clay polymer nanocomposites. These tennis-balls have twice the lifetime of conventional balls.[citation needed]
[edit]
Cosmetics
One field of application is in sunscreens. The traditional chemical UV protection approach suffers from its poor long-term stability. A sunscreen based on mineral nanoparticles such as titanium dioxide offer several advantages. Titanium dioxide nanoparticles have a comparable UV protection property as the bulk material, but lose the cosmetically undesirable whitening as the particle size is decreased.
[edit]
Potential risks
Potential risks of nanotechnology can broadly be grouped into three areas:
· the risk to health and environment from nanoparticles and nanomaterials;
· the risk posed by molecular manufacturing (or advanced nanotechnology);
· societal risks.
[edit]
Risks from nanoparticles
The mere presence of nanomaterials (materials that contain nanoparticles) is not in itself a threat. It is only certain aspects that can make them risky, in particular their mobility and their increased reactivity. Only if certain properties of certain nanoparticles were harmful to living beings or the environment would we be faced with a genuine hazard.
In addressing the health and environmental impact of nanomaterials we need to differentiate two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device (“fixed” nano-particles); and (2) “free” nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. These free nanoparticles could be nanoscale species of elements, or simple compounds, but also complex compounds where for instance a nanoparticle of a particular element is coated with another substance (“coated” nanoparticle or “core-shell” nanoparticle).
There seems to be consensus that, although one should be aware of materials containing fixed nanoparticles, the immediate concern is with free nanoparticles.
Because nanoparticles are very different from their everyday counterparts, their adverse effects cannot be derived from the known toxicity of the macro-sized material. This poses significant issues for addressing the health and environmental impact of free nanoparticles.
To complicate things further, in talking about nanoparticles it is important that a powder or liquid containing nanoparticles is almost never monodisperse, but will contain a range of particle sizes. This complicates the experimental analysis as larger nanoparticles might have different properties than smaller ones. Also, nanoparticles show a tendency to aggregate and such aggregates often behave differently from individual nanoparticles.
[edit]
Health Issues
There are four entry routes for nanoparticles into the body: they can be inhaled, swallowed, absorbed through skin or be deliberately injected during medical procedures (or released from implants). Once within the body they are highly mobile and in some instances can even cross the blood-brain barrier.
How these nanoparticles behave inside the organism is one of the big issues that needs to be resolved. Basically, the behavior of nanoparticles is a function of their size, shape and surface reactivity with the surrounding tissue. They could cause “overload” on phagocytes, cells that ingest and destroy foreign matter, thereby triggering stress reactions that lead to inflammation and weaken the body’s defense against other pathogens. Apart from what happens if non- or slowly degradable nanoparticles accumulate in organs, another concern is their potential interaction with biological processes inside the body: because of their large surface, nanoparticles on exposure to tissue and fluids will immediately absorb onto their surface some of the macromolecules they encounter. Can this, for instance, affect the regulatory mechanisms of enzymes and other proteins?
Certain nanoparticles can also have negative effects on the body. For example, in a lake, trout have been known to die of overexposure to the slightest amount of Carbon 60[citation needed] (a molecule consiting of 60 carbon atoms, known technically as buckminsterfullerenes or colloquially as "bucky balls"). The bucky ball itself is a popular molecule in the production of carbon based nanostructures such as carbon tubes.
[edit]
Environmental Issues
Not enough data exists to know for sure if nanoparticles could have undesirable effects on the environment. Two areas are relevant here: (1) In free form nanoparticles can be released in the air or water during production (or production accidents) or as waste byproduct of production, and ultimately accumulate in the soil, water or plant life. (2) In fixed form, where they are part of a manufactured substance or product, they will ultimately have to be recycled or disposed of as waste. We don’t know yet if certain nanoparticles will constitute a completely new class of non-biodegradable pollutant. In case they do, we also don’t know yet how such pollutants could be removed from air or water because most traditional filters are not suitable for such tasks (their pores are too big to catch nanoparticles).
Health and environmental issues combine in the workplace of companies engaged in producing or using nanomaterials and in the laboratories engaged in nanoscience and nanotechnology research. It is safe to say that current workplace exposure standards for dusts cannot be applied directly to nanoparticle dusts.
To properly assess the health hazards of engineered nanoparticles the whole life cycle of these particles needs to be evaluated, including their fabrication, storage and distribution, application and potential abuse, and disposal. The impact on humans or the environment may vary at different stages of the life cycle.
[edit]
Risks from molecular manufacturing
An often cited worst-case scenario is "grey goo", a hypothetical substance into which the surface of the earth might be transformed by self-replicating nanobots running amok. This concept has been analyzed by Freitas in "Some Limits to Global Ecophagy by Biovorous Nanoreplicators, with Public Policy Recommendations" [2] With the advent of nan-biotech, a different scenario called green goo has been forwarded. Here, the malignant substance is not nanobots but rather self-replicating organisms engineered through nanotechnology.
[edit]
Societal risks
Societal risks from the use of nanotechnology have also been raised. On the instrumental level, these include the possibility of military applications of nanotechnology (such as implants and other means for soldier enhancement, such as those being developed at the Institute for Soldier Nanotechnologies at MIT [3]) as well as enhanced surveillance capabilities through nano-sensors.
On the structural level, critics of nanotechnology point to a new world of ownership and corporate control opened up by nanotechnology. The claim is that, just as biotechnology's ability to manipulate genes went hand in hand with the patenting of life, so too nanotechnology's ability to manipulate molecules has led to the patenting of matter. The last few years has seen a gold rush to claim patents at the nanoscale. Over 800 nano-related patents were granted in 2003, and the numbers are increasing year to year. Corporations are already taking out broad ranging monopoly patents on nanoscale discoveries and inventions. For example, two corporations, NEC and IBM, hold the basic patents on carbon nanotubes, one of the current cornerstones of nanotechnology. Carbon nanotubes have a wide range of uses, and look set to become crucial to several industries from electronics and computers, to strengthened materials to drug delivery and diagnostics. Carbon nanotubes are poised to become a major traded commodity with the potential to replace major conventional raw materials. However, as their use expands, anyone seeking to manufacture or sell carbon nanotubes, no matter what the application, must first buy a license from NEC or IBM.
[edit]
Nanotechnology risks and regulators
Regulatory bodies such as the Environmental Protection Agency and the Food and Drug Administration in the U.S. or the Health & Consumer Protection Directorate of the European Commission have started dealing with the potential risks posed by nanoparticles. So far, neither engineered nanoparticles nor the products and materials that contain them are subject to any special regulation regarding production, handling or labeling. The Material Safety Data Sheet that must be issued for certain materials often do not differentiate between bulk and nanoscale size of the material in question.
Studies of the health impact of airborne particles are the closest thing we have to a tool for assessing potential health risks from free nanoparticles. These studies have generally shown that the smaller the particles get, the more toxic they become. This is due in part to the fact that, given the same mass per volume, the dose in terms of particle numbers increases as particle size decreases.
Looking at all available data, it must be concluded that current risk assessment methodologies are not suited to the hazards associated with nanoparticles; in particular, existing toxicological and eco-toxicological methods are not up to the task; exposure evaluation (dose) needs to be expressed as quantity of nanoparticles and/or surface area rather than simply mass; equipment for routine detecting and measuring nanoparticles in air, water or soil is inadequate; and very little is known about the physiological responses to nanoparticles.
Regulatory bodies in the U.S. as well as in the EU have concluded that nanoparticles form the potential for an entirely new risk and that it is necessary to carry out an extensive analysis of the risk. The outcome of these studies can then form the basis for government and international regulations.
[edit]
New materials, devices, technologies
To meet Wikipedia's quality standards, this article or section may require cleanup.Please discuss this issue on the talk page, or replace this tag with a more specific message. Editing help is available.This article has been tagged since November 2005.
[edit]
Manufacturing
When the term "nanotechnology" was independently coined and popularized by Eric Drexler, who at the time was unaware of Taniguchi's usage, it referred to a future manufacturing technology based on molecular machine systems. The premise was that molecular-scale biological analogies of traditional machine components demonstrated that molecular machines were possible, and that a manufacturing technology based on the mechanical functionality of these components (such as gears, bearings, motors, and structural members) would enable programmable, positional assembly to atomic specification (see the original reference PNAS-1981). The physics and engineering performance of exemplar designs were analyzed in the textbook Nanosystems.
Because the term "nanotechnology" was subsequently applied to other uses, new terms evolved to refer to this distinct usage: "molecular nanotechnology," "molecular manufacturing," and most recently, "productive nanosystems."
One alternative view is that designs such as those proposed by Drexler and Merkle do not accurately account for the electrostatic interactions and will not operate according to the results of the analysis in Nanosystems. The contention is that man-made nanodevices will probably bear a much stronger resemblance to other (less mechanical) nanodevices found in nature: cells, viruses, and prions. This idea is explored by Richard A. L. Jones in his book Soft Machines: Nanotechnology and Life (ISBN 0-19-852855-8).
Another view, put forth by Carlo Montemagno, is that future nanosystems will be hybrids of silicon technology and biological molecular machines, and his group's research is directed toward this end.
The seminal experiment proving that positional molecular assembly is possible was performed by Ho and Lee at Cornell University in 1999. They used a scanning tunneling microscope to move an individual carbon monoxide molecule (CO) to an individual iron atom (Fe) sitting on a flat silver crystal, and chemically bind the CO to the Fe by applying a voltage.
Though biology clearly demonstrates that molecular machine systems are possible, non-biological molecular machines are today only in their infancy. Leaders in research on non-biological molecular machines are Dr. Alex Zettl and his colleagues at Lawrence Berkeley Laboratories and UC Berkeley. They have constructed at least three distinct molecular devices whose motion is controlled from the desktop with changing voltage: a rotating molecular motor, a molecular actuator, and a nanoelectromechanical relaxation oscillator.
Manufacturing in the context of productive nanosystems is not related to, and should be clearly distinguished from, the conventional technologies used to manufacture nanomaterials such as carbon nanotubes and nanoparticles.
[edit]
Key Characteristics
· Some nanodevices self-assemble. That is, they are built by mixing two or more complementary and mutually attractive pieces together so they make a more complex and useful whole. Other nanodevices must be built piece by piece in stages, much as manufactured items are currently made. Scanning probe microscopy is an important technique both for characterization and synthesis of nanomaterials. Atomic force microscopes and scanning tunneling microscopes can be used to look at surfaces and to move atoms around. By designing different tips for these microscopes, they can be used for carving out structures on surfaces and to help guide self-assembling structures. Atoms can be moved around on a surface with scanning probe microscopy techniques, but it is cumbersome, expensive and very time-consuming, and for these reasons it is quite simply not feasible to construct nanoscaled devices atom by atom. You don't want to assemble a billion transistors into a microchip by taking an hour to place each transistor, but these techniques may eventually be used to make primitive nanomachines, which in turn can be used to make more sophisticated nanomachines.
· Natural or man-made particles or artifacts often have qualities and capabilities quite different from their macroscopic counterparts. Gold, for example, which is chemically inert at normal scales, can serve as a potent chemical catalyst at nanoscales.
· "Nanosize" powder particles (a few nanometres in diameter, also called nano-particles) are potentially important in ceramics, powder metallurgy, the achievement of uniform nanoporosity, and similar applications. The strong tendency of small particles to form clumps ("agglomerates") is a serious technological problem that impedes such applications. However, a few dispersants such as ammonium citrate (aqueous) and imidazoline or oleyl alcohol (nonaqueous) are promising additives for deagglomeration. (Those materials are discussed in "Organic Additives And Ceramic Processing," by Daniel J. Shanefield, Kluwer Academic Publ., Boston.)
[edit]
Difficulties
One of the problems facing nanotechnology concerns how to assemble atoms and molecules into smart materials and working devices. Supramolecular chemistry, a very important tool here, is the chemistry beyond the molecule, and molecules are being designed to self-assemble into larger structures. In this case, biology is used to find a potential solution: cells and their pieces are made from self-assembling biopolymers such as proteins and protein complexes. One of the things being explored is synthesis of organic molecules by adding them to the ends of complementary DNA strands such as ----A and ----B, with molecules A and B attached to the end; when these are put together, the complementary DNA strands hydrogen bonds into a double helix, ====AB, and the DNA molecule can be removed to isolate the product AB.
[edit]
Advanced nanotechnology
Advanced nanotechnology, sometimes called molecular manufacturing, is a term given to the concept of engineered nanosystems (nanoscale machines) operating on the molecular scale. By the countless examples found in biology it is currently known that billions of years of evolutionary feedback can produce sophisticated, stochastically optimized biological machines, and it is hoped that developments in nanotechnology will make possible their construction by some shorter means, perhaps using biomimetic principles. However, K Eric Drexler and other researchers have proposed that advanced nanotechnology, although perhaps initially implemented by biomimetic means, ultimately could be based on mechanical engineering principles (see also mechanosynthesis)
In August 2005, a task force consisting of 50+ international experts from various fields was organized by the Center for Responsible Nanotechnology to study the societal implications of molecular nanotechnology [4].
Determining a set of pathways for the development of molecular nanotechnology is now an objective of a broadly based technology roadmap project [5] led by Battelle (the manager of several U.S. National Laboratories) and the Foresight Institute. That roadmap should be completed by early 2007.
[edit]
Interdisciplinarian ensemble
A definitive feature of nanotechnology is that it constitutes an interdisciplinary ensemble of several fields of the natural sciences that are, in and of themselves, actually highly specialized. Thus, physics play an important role—alone in the construction of the microscope used to investigate such phenomena but above all in the laws of quantum mechanics. Chemistry also play an important role in the identification of the materials, steps and synthesis of molecules for nanotechnical devices. It is not surprising, then, since Physics and Chemistry share the same principles and overlap so much, that Physical Chemistry (or Chemical physics) is probably the most fundamental discipline in the nanotechology research. This is an important concept to mention, because a lot of research depends on the background that future students will have. Of course, the best educational pathway to this type of research (perhaps the only one to master this source) is a multidisciplinary one, one with basic science and engineering knowledge.