Pages

ASK ME .......fill in the boxes with your questions. InsyaAllah, get the answer within 48 hours!

Name:
Email Address:
Kategori Pembaca Pelajar saya
Remaja / Pelajar
Belia / Penuntut IPT
Dewasa
Warga Pendidikan
Komen dan Cadangan penambahbaikan blog.
Kongsikan apa-apa sahaja. Utarakan soalan anda. InsyaAllah, saya akan berusaha menjawabnya.

This contact form was created by Freedback.

Berpindah-MOVING-

assalamualaikum.

Bermula Januari 2012, anwarjauhari telah menjadikan blog http://cikguhairul.blogspot.com sebagai laman utama.

Justeru, laman anwaruitm ini hanya akan digunakan bagi memuatkan entri tahap tinggi yang tidak sesuai dimuatkan di dalam blog cikguhairul.

Walaupun begitu, setiap komen dan maklumbalas (borang freedback) yang pengunjung tinggalkan tetap saya berikan perhatian.InsyaAllah.

Thursday, August 17, 2006

ISLAMIC WORLD

1. ISLAMIC WORLD
 MASJID
YADIM
CIKGU
LIBRARY USM

ENJIN CARIAN

1. KATA PUJANGGA
2. GOOGLES
3 TELAGA BIRU
4. TUTOR UTUSAN
5.JAIM
6MAP TRAINING
7. CRAWLER
8 YAHOO
9 SEJARAH MELAYU
ONLINE ARTIKEL
NANO MASTER
INSTITUT NANO
NANI FORUM
library usm
pusat racun usm
akhbar pendidikan
katalog buku
pasal kindness

Saturday, August 12, 2006

2,500 mohon dana penyelidikan

2,500 mohon dana penyelidikan

KEMENTERIAN Sains Teknologi dan Inovasi menerima kira-kira 2,500 permohonan daripada penyelidik institusi pengajian tinggi (IPT) untuk mendapatkan dana bagi melaksanakan projek penyelidikan dan pembangunan (R&D) berasaskan sains dan teknologi (S&T) sebaik kerajaan mengumumkan peruntukan RM3 bilion dalam Rancangan Malaysia Kes embilan (RMK-9).

Setiausaha Parlimen kementerian berkenaan, Datuk Dr Mohd Ruddin Abdul Ghani, berkata dana itu turut mendapat sambutan menggalakkan daripada syarikat tempatan apabila menerima 281 permohonan.Katanya, permohonan itu membabitkan penyelidikan dalam bidang S&T dengan pengkhususan teknologi maklumat dan komunikasi, bioteknologi, nano teknologi dan prototaip lanjutan.Selain itu, beliau berkata, kementerian juga memperuntukkan sejumlah RM100 juta bagi menjayakan program membina modal insan. “Dana ini disediakan sejajar hasrat kerajaan melahirkan tenaga profesional yang berdaya saing sebagai bakal pemimpin negara pada masa depan.“Peruntukan ini juga terbuka kepada pelajar mahupun pegawai untuk melanjutkan pengajian peringkat sarjana atau doktor falsafah di IPT tempatan mahupun luar negara,” katanya pada sidang akhbar selepas merasmikan Pesta ICT Universiti Kebangsaan Malaysia (UKM) di Bangi, semalam. Hadir sama Pengarah Pusat Kokurikulum UKM, Dr Jamaludin Badushah.Mohd Ruddin berkata, permohonan berkenaan dibuka bagi kajian jangka pendek dan panjang membabitkan tempoh dua hingga lima tahun dengan dana antara RM2 juta hingga RM40 juta.Katanya, dana yang disediakan dibahagikan kepada tiga kategori iaitu RM1.3 bilion untuk sains, teknologi (RM1.2 bilion) dan inovasi (RM200 juta) .Dana sains, diperuntukkan bagi kerja penyelidikan asas seperti menjana teknologi baru, manakala teknologi pula menjurus kepada pembiayaan memasarkan sesuatu produk iaitu prototaip yang sudah dihasilkan dan menunggu untuk dikomersialkan.“Bagi memastikan hasil penyelidikan dapat dikomersialkan di pasaran tempatan mahupun antarabangsa, kerajaan menggalakkan kerjasama antara penyelidik di IPT dengan pakar swasta. “Gabungan dua pihak ini akan membentuk kerjasama padu dalam memastikan teknologi yang dihasilkan dimanfaatkan pengguna peringkat global.“Permohonan dana berdasarkan merit projek dan hasil penyelidikan. Jika sesuatu penyelidikan mempunyai nilai komersial tinggi dan berpotensi dibangunkan, kerajaan akan menaja keseluruhan kos projek berkenaan. Ia sebagai menyokong usaha penyelidik menghasilkan jenama Malaysia,” katanya.Mohd Ruddin berkata, penyelidik pula perlu memastikan produk mereka berkualiti untuk pasaran luar negara. Beliau berkata, setakat ini pihaknya sudah meneliti semua permohonan dan keputusan akan diumumkan tidak lama lagi.Katanya, dana penyelidikan ini juga terbuka kepada mereka yang menjalankan kajian dalam bidang kimia, fizik mahupun perubatan.
http://www.bharian.com.my/m/BHarian/Thursday/Pendidikan/20060803090914/Article/

Nanotechnology

From Wikipedia, the free encyclopedia
Jump to: navigation, search


Molecular gears from a NASA computer simulation.
Nanotechnology is the design, characterization, production and application of structures, devices and systems by controlling shape and size at the nanoscale. Eight to ten atoms span one nanometer (nm). The human hair is approximately 70,000 to 80,000 nm thick. Nanotechnology has been put to practical use for a wide range of applications, including stain resistant pants, enhanced tire reinforcement and improved suntan lotion.
Nanotechnology should really be called “nanotechnologies”: There is no single field of nanotechnology. The term broadly refers to such fields as biology, physics or chemistry, any scientific field, or a combination thereof, that deals with the deliberate and controlled manufacturing of nanostructures.The United States' National Nanotechnology Initiative website defines it as follows: "Nanotechnology is the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel applications." The Woodrow Wilson International Center for Scholars' Project on Emerging Nanotechnologies has developed a plan to address the growing risks associated with nanotechnology, involving the EPA, NIH, NIST and NIOSH [1].
Nanoscience is the study of phenomena and manipulation of material at the nanoscale, in essence an extension of existing sciences into the nanoscale. Nanoscience is the world of atoms, molecules, macromolecules, quantum dots, and macromolecular assemblies, and is dominated by surface effects such as Van der Waals force attraction, hydrogen bonding, electronic charge, ionic bonding, covalent bonding, hydrophobicity, hydrophilicity, and quantum mechanical tunneling, to the virtual exclusion of macro-scale effects such as turbulence and inertia. For example, the vastly increased ratio of surface area to volume opens new possibilities in surface-based science, such as catalysis.
The ongoing quest for miniaturization has resulted in tools such as the atomic force microscope (AFM) and the scanning tunneling microscope (STM). Combined with refined processes such as electron beam lithography, these instruments allow us to deliberately manipulate and manufacture nanostructures. Engineered nanomaterials, either by way of a top-down approach (a bulk material is reduced in size to nanoscale pattern) or a bottom-up approach (larger structures are built or grown atom by atom or molecule by molecule), go beyond just a further step in miniaturization. They have broken a size barrier below which quantization of energy for the electrons in solids becomes relevant. The so-called “quantum size effect” describes the physics of electron properties in solids with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, it becomes dominant when the nanometer size range is reached. Materials reduced to the nanoscale can suddenly show very different properties compared to what they show on a macroscale. For instance, opaque substances become transparent (copper); inert materials become catalysts (platinum); stable materials turn combustible (aluminum); solids turn into liquids at room temperature (gold); insulators become conductors (silicon).
A second important aspect of the nanoscale is that the smaller a nanoparticle gets, the larger its relative surface area becomes. Its electronic structure changes dramatically, too. Both effects lead to greatly improved catalytic activity but can also lead to aggressive chemical reactivity.
The fascination with nanotechnology stems from these unique quantum and surface phenomena that matter exhibits at the nanoscale, making possible novel applications and interesting materials.

History of Use


This animation of a rotating Carbon nanotube shows its 3D structure.
The first mention of some of the distinguishing concepts in nanotechnology (but predating use of that name) was in "There's Plenty of Room at the Bottom," a talk given by physicist Richard Feynman at an American Physical Society meeting at Caltech on December 29, 1959. Feynman described a process by which the ability to manipulate individual atoms and molecules might be developed, using one set of precise tools to build and operate another proportionally smaller set, so on down to the needed scale. In the course of this, he noted, scaling issues would arise from the changing magnitude of various physical phenomena: gravity would become less important, surface tension and Van der Waals attraction would become more important, etc. This basic idea appears feasible, and exponential assembly enhances it with parallelism to produce a useful quantity of end products.
The term "nanotechnology" was defined by Tokyo Science University Professor Norio Taniguchi in a 1974 paper (N. Taniguchi, "On the Basic Concept of 'Nano-Technology'," Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.) as follows: "'Nano-technology' mainly consists of the processing of, separation, consolidation, and deformation of materials by one atom or one molecule." In the 1980s the basic idea of this definition was explored in much more depth by Dr. Eric Drexler, who promoted the technological significance of nano-scale phenomena and devices through speeches and the books Engines of Creation: The Coming Era of Nanotechnology and Nanosystems: Molecular Machinery, Manufacturing, and Computation, (ISBN 0-471-57518-6), and so the term acquired its current sense.
More broadly, nanotechnology includes the many techniques used to create structures at a size scale below 100 nm, including those used for fabrication of nanowires, those used in semiconductor fabrication such as deep ultraviolet lithography, electron beam lithography, focused ion beam machining, nanoimprint lithography, atomic layer deposition, and molecular vapor deposition, and further including molecular self-assembly techniques such as those employing di-block copolymers. However, all of these techniques preceded the nanotech era, and are extensions in the development of scientific advancements rather than techniques which were devised with the sole purpose of creating nanotechnology or which were results of nanotechnology research.
Nanotechnology and nanoscience got started in the early 1980s with two major developments; the birth of cluster science and the invention of the scanning tunneling microscope (STM). This development led to the discovery of fullerenes in 1986 and carbon nanotubes a few years later. In another development, the synthesis and properties of semiconductor nanocrystals was studied. This led to a fast increasing number of metal oxide nanoparticles of quantum dots.
Technologies currently branded with the term 'nano' are little related to and fall far short of the most ambitious and transformative technological goals of the sort in molecular manufacturing proposals, but the term still connotes such ideas. Thus there may be a danger that a "nano bubble" will form from the use of the term by scientists and entrepreneurs to garner funding, regardless of (and perhaps despite a lack of) interest in the transformative possibilities of more ambitious and far-sighted work. The diversion of support based on the promises of proposals like molecular manufacturing to more mundane projects also risks creating a perhaps unjustifiedly cynical impression of the most ambitious goals: an investor intrigued by molecular manufacturing who invests in 'nano' only to find typical materials science advances result might conclude that the whole idea is hype, unable to appreciate the bait-and-switch made possible by the vagueness of the term. On the other hand, some have argued that the publicity and competence in related areas generated by supporting such 'soft nano' projects is valuable, even if indirect, progress towards nanotechnology's most ambitious goals.
The National Science Foundation (NSF), a major funding instrument for nanotechnology, commissioned Professor David M. Berube to conduct a comprehensive survey of the field. His conclusions are documented in an extensively footnoted monograph “Nano-Hype: The Truth Behind the Nanotechnology Buzz.” This published study (with a forward by Mihail Roco, head of the NNI) concludes that much of what is sold as “nanotechnology” is in fact a recasting of straightforward materials science, which is leading to a “nanotech industry built solely on selling nanotubes, nanowires, and the like” which will “end up with a few suppliers selling low margin products in huge volumes." This is exemplified by companies such as Nanosys, which have shifted their focus from nanotechnology to more conventional materials science.
[edit]
Definition of nanostructures
In describing nanostructures we need to differentiate between the number of dimensions of the nanoscale. Nanotextured surfaces are one dimension on the nanoscale, i.e., only the thickness of the surface of an object is between 0.1 and 100 nm. Nanotubes are two dimensions on the nanoscale, i.e., the diameter of the tube is between 0.1 and 100nm; its length could be much greater. Finally, spherical nanoparticles are three dimensions on the nanoscale, i.e., the particle is between 0.1 and 100 nm in each spatial dimension. The terms nanoparticles and ultrafine particles (UFP) often are used synonymously although UFP can reach into the micron range.
[edit]
Tools and Techniques
Nanoscience and nanotechnology only became possible in the 1980s with the development of the first tools to measure and make nanostructures.
The atomic force microscope (AFM) and the Scanning Tunneling Microscope (STM) are two early versions of scanning probes that launched nanotechnology. There are other types of scanning probe microscopy, all based on the idea of the STM, that make it possible to see structures at the nanoscale.
The tip of scanning probes can also be used to manipulate nanostructures (a process called positional assembly). However, this is a very slow process. This led to the development of various techniques of nanolithography such as dip pen nanolithography, electron beam lithography or nanoimprint lithography.
Lithography is a top-down fabrication technique where a bulk material is reduced in size to nanoscale pattern.
In contrast, bottom-up techniques build or grow larger structures atom by atom or molecule by molecule. These techniques include chemical synthesis, self-assembly and positional assembly.
[edit]
Applications and potential benefits
With nanotechnology, a large set of materials with distinct properties (optical, electrical, or magnetic) can be fabricated. Nanotechnologically improved products rely on a change in the physical properties when the feature sizes are shrunk. Nanoparticles for example take advantage of their dramatically increased surface area to volume ratio. Their optical properties, e.g. fluorescence, become a function of the particle diameter. When brought into a bulk material, nanoparticles can strongly influence the mechanical properties, such as the stiffness or elasticity. Example, traditional polymers can be reinforced by nanoparticles resulting in novel materials e.g. as lightweight replacements for metals. Therefore, an increasing societal benefit of such nanoparticles can be expected.
Such nanotechnologically enhanced materials will enable a weight reduction accompanied by an increase in stability and an improved functionality.
[edit]
Medicine
The biological and medical research communities have exploited the unique properties of nanomaterials for various applications (e.g., contrast agents for cell imaging and therapeutics for treating cancer). Terms such as biomedical nanotechnology, bionanotechnology, and nanomedicine are used to describe this hybrid field.
Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications.
Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, therapy, and drug-delivery vehicles.
[edit]
Diagnostics
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Biological tests measuring the presence or activity of selected substances become quicker, more sensitive and more flexible when certain nanoscale particles are put to work as tags or labels. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.
[edit]
Drug delivery
The overall drug consumption and side-effects can be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. This highly selective approach reduces costs and human suffering. An example can be found in dendrimers and nanoporous materials. They could hold small drug molecules transporting them to the desired location. Another vision is based on small electromechanical systems: NEMS are being investigated for the active release of drugs. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells.
A targeted or personalized medicine reduces the drug consumption and treatment expenses resulting in an overall societal benefit by reducing the costs to the public health system.
[edit]
Tissue engineering
Nanotechnology can help to reproduce or to repair damaged tissue. This so called “tissue engineering” makes use of artificially stimulated cell proliferation by using suitable nanomaterial-based scaffolds and growth factors. Tissue engineering might replace today’s conventional treatments, e.g. transplantation of organs or artificial implants. On the other hand, tissue engineering is closely related to the ethical debate on human stem cells and its ethical implications.
[edit]
Chemistry and environment
Chemical catalysis and filtration techniques are two prominent examples where nanotechnology already plays a role. The synthesis provides novel materials with tailored features and chemical properties e.g. nanoparticles with a distinct chemical surrounding (ligands) or specific optical properties. In this sense, chemistry is indeed a basic nanoscience. In a short-term perspective, chemistry will provide novel “nanomaterials” and in the long run, superior processes such as “self-assembly” will enable energy and time preserving strategies.
In a sense, all chemical synthesis can be understood in terms of nanotechnology, because of its ability to manufacture certain molecules. Thus, chemistry forms a base for nanotechnology providing tailor-made molecules, polymers etc. and furthermore clusters and nanoparticles.
[edit]
Catalysis
Chemical catalysis benefits especially from nanoparticles, due to the extremely large surface to volume ratio. The application potential of nanoparticles in catalysis ranges from fuel cell to catalytic converters and photocatalytic devices. Catalysis is also important for the production of chemicals.
[edit]
Filtration
A strong influence of nanochemistry on waste-water treatment, air purification and energy storage devices is to be expected. Mechanical or chemical methods can be used for effective filtration techniques. One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”). Nanofiltration is mainly used for the removal of ions or the separation of different fluids. On a larger scale, the membrane filtration technique is named ultrafiltration, which works down to between 10 and 100 nm. One important field of application for ultrafiltration is medical purposes as can be found in renal dialysis.
Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water by making use of magnetic separation techniques. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods.
[edit]
Energy
The most advanced nanotechnology projects related to energy are: storage, conversion, manufacturing improvements by reducing materials and process rates, energy saving e.g. by better thermal insulation, and enhanced renewable energy sources.
[edit]
Reduction of energy consumption
A reduction of energy consumption can be reached by better insulation systems, by the use of more efficient lighting or combustion systems, and by use of lighter and stronger materials in the transportation sector. Currently used light bulbs only convert approximately 5% of the electrical energy into light. Nanotechnological approaches like LEDs (Light-emitting diodes) or QCAs (Quantum Caged Atoms) could lead to a strong reduction of energy consumption for illumination.
[edit]
Increasing the efficiency of energy production
Today's best solar cells have layers of two different semiconductors stacked together to absorb light at different energies but they still only manage to use 30 percent of the Sun's energy. Commercially available solar cells have much lower efficiencies (less than 20%). Nanotechnology can help to increase the efficiency of light conversion by specifically designed nanostructures. The degree of efficiency of combustion engines is not higher than 15-20% at the moment. Nanotechnology can improve combustion by designing specific catalysts with maximized surface area. Also, scientists have recently developed tetrad-shaped nanoparticles that, when applied to a surface, instantly transform it into a solar collector. It only has about a 15% efficiency level at the moment, but that is expected to rise, and it's current value is that it can turn any surface (such as rooftops and even blankets) into mini solar plants.
[edit]
The use of more environmentally friendly energy systems
An example for an environmentally friendly form of energy is the use of fuel cells powered by hydrogen, which is ideally produced by renewable energies. Probably the most prominent nanostructured material in fuel cells is the catalyst consisting of carbon supported noble metal particles with diameters of 1- 5 nm. Suitable materials for hydrogen storage contain a large number of small nanosized pores. Therefore many nanostructured materials like nanotubes, zeolites or alanates are under investigation.
Nanotechnology can contribute to the further reduction of combustion engine pollutants by nanoporous filters, which can clean the exhaust mechanically, by catalytic converters based on nanoscale noble metal particles or by catalytic coatings on cylinder walls and catalytic nanoparticles as additive for fuels.
[edit]
Recycling of batteries
Because of the relatively low energy density of batteries the operating time is limited and a replacement or recharging is needed. The huge number of spent batteries and accumulators represent a disposal problem. The use of batteries with higher energy content or the use of rechargeable batteries or supercapacitors with higher rate of recharging using nanomaterials could be helpful for the battery disposal problem.
[edit]
Information and Communication
Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of integrated circuits is already at the nanoscale (50 nm and below) regarding the gate length of transistors in CPUs or DRAM devices.
[edit]
Novel semiconductor devices
An example of such novel devices is based on spintronics.The dependence of the resistance of a material (due to the spin of the electrons) on an external field is called magnetoresistance. This effect can be significantly amplified (GMR – Giant Magneto-Resistance) for nanosized objects, for example when two ferromagnetic layers are separated by a nonmagnetic layer, which is several nanometers thick (e.g. Co-Cu-Co). The GMR effect has led to a strong increase in the data storage density of hard disks and made the gigabyte range possible. The so called tunneling magnetoresistance (TMR) is very similar to GMR and based on the spin dependant tunneling of electrons through adjacent ferromagnetic layers. Both the GMR- and the TMR-effect can be used to create a non-volatile main memory for computers, such as the so called magnetic random access memory or MRAM.
[edit]
Novel optoelectronic devices
In the modern communication technology traditional analog electrical devices are increasingly replaced by optical or optoelectronic devices due to their enormous bandwidth and capacity, respectively. Two promising examples are photonic crystals and quantum dots.
Photonic crystals are materials with a periodic variation in the refractive index with a lattice constant that is half the wavelength of the light used. They offer a selectable band gap for the propagation of a certain wavelength, thus they resemble a semiconductor, but for light or photons instead of electrons.
Quantum dots are nanoscaled objects, which can be used, among many other things, for the construction of lasers. The advantage of a quantum dot laser over the traditional semiconductor laser is that their emitted wavelength depends on the diameter of the dot. Quantum dot lasers are cheaper and offer a higher beam quality than conventional laser diodes.
[edit]
Displays
The production of displays with low energy consumption could be accomplished using carbon nanotubes. CNTs can be electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for field emission displays (FED). The principle of operation resembles that of the cathode ray tube, but on a much smaller length scale.
[edit]
Quantum Computer
Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms.
[edit]
Consumer goods
Nanotechnology is already impacting the field of consumer goods, providing products with novel functions ranging from easy-to-clean to scratch-resistant. Modern textiles are wrinkle-resistant and stain-repellent; in the mid-term clothes will become “smart”, through embedded “wearable electronics”. Already in use are different nanoparticle improved products. Especially in the field of cosmetics such novel products have a promising potential.
[edit]
Foods
Nanotechnology can be applied in the production, processing, safety and packaging of food. A nanocomposite coating process could improve food packaging by placing anti-microbial agents directly on the surface of the coated film. Nanocomposites could increase or decrease gas permeability of different fillers as is needed for different products. They can also improve the mechanical and heat-resistance properties and lower the oxygen transmission rate. Research is being performed to apply nanotechnology to the detection of chemical and biological substances for sensing biochemical changes in foods.
[edit]
Household
The most prominent application of nanotechnology in the household is self-cleaning or “easy-to-clean” surfaces on ceramics or glasses. Nanoceramic particles have improved the smoothness and heat resistance of common household equipment such as the flat iron.
[edit]
Optics
The first sunglasses using protective and antireflective ultrathin polymer coatings are on the market. For optics, nanotechnology also offers scratch resistant coatings based on nanocomposites.
[edit]
Textiles
The use of engineered nanofibers already makes clothes water- and stain-repellent or wrinkle-free. Textiles with a nanotechnological finish can be washed less frequently and at lower temperatures. Nanotechnology has been used to integrate tiny carbon particles membrane and guarantee full-surface protection from electrostatic charges for the wearer.
[edit]
Sports
Tennis rackets with carbon nanotubes have an increased torsion and flex resistance. The rackets are more rigid than current carbon rackets and pack more power. Long-lasting tennis-balls are made by coating the inner core with clay polymer nanocomposites. These tennis-balls have twice the lifetime of conventional balls.[citation needed]
[edit]
Cosmetics
One field of application is in sunscreens. The traditional chemical UV protection approach suffers from its poor long-term stability. A sunscreen based on mineral nanoparticles such as titanium dioxide offer several advantages. Titanium dioxide nanoparticles have a comparable UV protection property as the bulk material, but lose the cosmetically undesirable whitening as the particle size is decreased.
[edit]
Potential risks
Potential risks of nanotechnology can broadly be grouped into three areas:
· the risk to health and environment from nanoparticles and nanomaterials;
· the risk posed by molecular manufacturing (or advanced nanotechnology);
· societal risks.
[edit]
Risks from nanoparticles
The mere presence of nanomaterials (materials that contain nanoparticles) is not in itself a threat. It is only certain aspects that can make them risky, in particular their mobility and their increased reactivity. Only if certain properties of certain nanoparticles were harmful to living beings or the environment would we be faced with a genuine hazard.
In addressing the health and environmental impact of nanomaterials we need to differentiate two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device (“fixed” nano-particles); and (2) “free” nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. These free nanoparticles could be nanoscale species of elements, or simple compounds, but also complex compounds where for instance a nanoparticle of a particular element is coated with another substance (“coated” nanoparticle or “core-shell” nanoparticle).
There seems to be consensus that, although one should be aware of materials containing fixed nanoparticles, the immediate concern is with free nanoparticles.
Because nanoparticles are very different from their everyday counterparts, their adverse effects cannot be derived from the known toxicity of the macro-sized material. This poses significant issues for addressing the health and environmental impact of free nanoparticles.
To complicate things further, in talking about nanoparticles it is important that a powder or liquid containing nanoparticles is almost never monodisperse, but will contain a range of particle sizes. This complicates the experimental analysis as larger nanoparticles might have different properties than smaller ones. Also, nanoparticles show a tendency to aggregate and such aggregates often behave differently from individual nanoparticles.
[edit]
Health Issues
There are four entry routes for nanoparticles into the body: they can be inhaled, swallowed, absorbed through skin or be deliberately injected during medical procedures (or released from implants). Once within the body they are highly mobile and in some instances can even cross the blood-brain barrier.
How these nanoparticles behave inside the organism is one of the big issues that needs to be resolved. Basically, the behavior of nanoparticles is a function of their size, shape and surface reactivity with the surrounding tissue. They could cause “overload” on phagocytes, cells that ingest and destroy foreign matter, thereby triggering stress reactions that lead to inflammation and weaken the body’s defense against other pathogens. Apart from what happens if non- or slowly degradable nanoparticles accumulate in organs, another concern is their potential interaction with biological processes inside the body: because of their large surface, nanoparticles on exposure to tissue and fluids will immediately absorb onto their surface some of the macromolecules they encounter. Can this, for instance, affect the regulatory mechanisms of enzymes and other proteins?
Certain nanoparticles can also have negative effects on the body. For example, in a lake, trout have been known to die of overexposure to the slightest amount of Carbon 60[citation needed] (a molecule consiting of 60 carbon atoms, known technically as buckminsterfullerenes or colloquially as "bucky balls"). The bucky ball itself is a popular molecule in the production of carbon based nanostructures such as carbon tubes.
[edit]
Environmental Issues
Not enough data exists to know for sure if nanoparticles could have undesirable effects on the environment. Two areas are relevant here: (1) In free form nanoparticles can be released in the air or water during production (or production accidents) or as waste byproduct of production, and ultimately accumulate in the soil, water or plant life. (2) In fixed form, where they are part of a manufactured substance or product, they will ultimately have to be recycled or disposed of as waste. We don’t know yet if certain nanoparticles will constitute a completely new class of non-biodegradable pollutant. In case they do, we also don’t know yet how such pollutants could be removed from air or water because most traditional filters are not suitable for such tasks (their pores are too big to catch nanoparticles).
Health and environmental issues combine in the workplace of companies engaged in producing or using nanomaterials and in the laboratories engaged in nanoscience and nanotechnology research. It is safe to say that current workplace exposure standards for dusts cannot be applied directly to nanoparticle dusts.
To properly assess the health hazards of engineered nanoparticles the whole life cycle of these particles needs to be evaluated, including their fabrication, storage and distribution, application and potential abuse, and disposal. The impact on humans or the environment may vary at different stages of the life cycle.
[edit]
Risks from molecular manufacturing
An often cited worst-case scenario is "grey goo", a hypothetical substance into which the surface of the earth might be transformed by self-replicating nanobots running amok. This concept has been analyzed by Freitas in "Some Limits to Global Ecophagy by Biovorous Nanoreplicators, with Public Policy Recommendations" [2] With the advent of nan-biotech, a different scenario called green goo has been forwarded. Here, the malignant substance is not nanobots but rather self-replicating organisms engineered through nanotechnology.
[edit]
Societal risks
Societal risks from the use of nanotechnology have also been raised. On the instrumental level, these include the possibility of military applications of nanotechnology (such as implants and other means for soldier enhancement, such as those being developed at the Institute for Soldier Nanotechnologies at MIT [3]) as well as enhanced surveillance capabilities through nano-sensors.
On the structural level, critics of nanotechnology point to a new world of ownership and corporate control opened up by nanotechnology. The claim is that, just as biotechnology's ability to manipulate genes went hand in hand with the patenting of life, so too nanotechnology's ability to manipulate molecules has led to the patenting of matter. The last few years has seen a gold rush to claim patents at the nanoscale. Over 800 nano-related patents were granted in 2003, and the numbers are increasing year to year. Corporations are already taking out broad ranging monopoly patents on nanoscale discoveries and inventions. For example, two corporations, NEC and IBM, hold the basic patents on carbon nanotubes, one of the current cornerstones of nanotechnology. Carbon nanotubes have a wide range of uses, and look set to become crucial to several industries from electronics and computers, to strengthened materials to drug delivery and diagnostics. Carbon nanotubes are poised to become a major traded commodity with the potential to replace major conventional raw materials. However, as their use expands, anyone seeking to manufacture or sell carbon nanotubes, no matter what the application, must first buy a license from NEC or IBM.
[edit]
Nanotechnology risks and regulators
Regulatory bodies such as the Environmental Protection Agency and the Food and Drug Administration in the U.S. or the Health & Consumer Protection Directorate of the European Commission have started dealing with the potential risks posed by nanoparticles. So far, neither engineered nanoparticles nor the products and materials that contain them are subject to any special regulation regarding production, handling or labeling. The Material Safety Data Sheet that must be issued for certain materials often do not differentiate between bulk and nanoscale size of the material in question.
Studies of the health impact of airborne particles are the closest thing we have to a tool for assessing potential health risks from free nanoparticles. These studies have generally shown that the smaller the particles get, the more toxic they become. This is due in part to the fact that, given the same mass per volume, the dose in terms of particle numbers increases as particle size decreases.
Looking at all available data, it must be concluded that current risk assessment methodologies are not suited to the hazards associated with nanoparticles; in particular, existing toxicological and eco-toxicological methods are not up to the task; exposure evaluation (dose) needs to be expressed as quantity of nanoparticles and/or surface area rather than simply mass; equipment for routine detecting and measuring nanoparticles in air, water or soil is inadequate; and very little is known about the physiological responses to nanoparticles.
Regulatory bodies in the U.S. as well as in the EU have concluded that nanoparticles form the potential for an entirely new risk and that it is necessary to carry out an extensive analysis of the risk. The outcome of these studies can then form the basis for government and international regulations.
[edit]
New materials, devices, technologies
To meet Wikipedia's quality standards, this article or section may require cleanup.Please discuss this issue on the talk page, or replace this tag with a more specific message. Editing help is available.This article has been tagged since November 2005.
[edit]
Manufacturing
When the term "nanotechnology" was independently coined and popularized by Eric Drexler, who at the time was unaware of Taniguchi's usage, it referred to a future manufacturing technology based on molecular machine systems. The premise was that molecular-scale biological analogies of traditional machine components demonstrated that molecular machines were possible, and that a manufacturing technology based on the mechanical functionality of these components (such as gears, bearings, motors, and structural members) would enable programmable, positional assembly to atomic specification (see the original reference PNAS-1981). The physics and engineering performance of exemplar designs were analyzed in the textbook Nanosystems.
Because the term "nanotechnology" was subsequently applied to other uses, new terms evolved to refer to this distinct usage: "molecular nanotechnology," "molecular manufacturing," and most recently, "productive nanosystems."
One alternative view is that designs such as those proposed by Drexler and Merkle do not accurately account for the electrostatic interactions and will not operate according to the results of the analysis in Nanosystems. The contention is that man-made nanodevices will probably bear a much stronger resemblance to other (less mechanical) nanodevices found in nature: cells, viruses, and prions. This idea is explored by Richard A. L. Jones in his book Soft Machines: Nanotechnology and Life (ISBN 0-19-852855-8).
Another view, put forth by Carlo Montemagno, is that future nanosystems will be hybrids of silicon technology and biological molecular machines, and his group's research is directed toward this end.
The seminal experiment proving that positional molecular assembly is possible was performed by Ho and Lee at Cornell University in 1999. They used a scanning tunneling microscope to move an individual carbon monoxide molecule (CO) to an individual iron atom (Fe) sitting on a flat silver crystal, and chemically bind the CO to the Fe by applying a voltage.
Though biology clearly demonstrates that molecular machine systems are possible, non-biological molecular machines are today only in their infancy. Leaders in research on non-biological molecular machines are Dr. Alex Zettl and his colleagues at Lawrence Berkeley Laboratories and UC Berkeley. They have constructed at least three distinct molecular devices whose motion is controlled from the desktop with changing voltage: a rotating molecular motor, a molecular actuator, and a nanoelectromechanical relaxation oscillator.
Manufacturing in the context of productive nanosystems is not related to, and should be clearly distinguished from, the conventional technologies used to manufacture nanomaterials such as carbon nanotubes and nanoparticles.
[edit]
Key Characteristics
· Some nanodevices self-assemble. That is, they are built by mixing two or more complementary and mutually attractive pieces together so they make a more complex and useful whole. Other nanodevices must be built piece by piece in stages, much as manufactured items are currently made. Scanning probe microscopy is an important technique both for characterization and synthesis of nanomaterials. Atomic force microscopes and scanning tunneling microscopes can be used to look at surfaces and to move atoms around. By designing different tips for these microscopes, they can be used for carving out structures on surfaces and to help guide self-assembling structures. Atoms can be moved around on a surface with scanning probe microscopy techniques, but it is cumbersome, expensive and very time-consuming, and for these reasons it is quite simply not feasible to construct nanoscaled devices atom by atom. You don't want to assemble a billion transistors into a microchip by taking an hour to place each transistor, but these techniques may eventually be used to make primitive nanomachines, which in turn can be used to make more sophisticated nanomachines.
· Natural or man-made particles or artifacts often have qualities and capabilities quite different from their macroscopic counterparts. Gold, for example, which is chemically inert at normal scales, can serve as a potent chemical catalyst at nanoscales.
· "Nanosize" powder particles (a few nanometres in diameter, also called nano-particles) are potentially important in ceramics, powder metallurgy, the achievement of uniform nanoporosity, and similar applications. The strong tendency of small particles to form clumps ("agglomerates") is a serious technological problem that impedes such applications. However, a few dispersants such as ammonium citrate (aqueous) and imidazoline or oleyl alcohol (nonaqueous) are promising additives for deagglomeration. (Those materials are discussed in "Organic Additives And Ceramic Processing," by Daniel J. Shanefield, Kluwer Academic Publ., Boston.)
[edit]
Difficulties
One of the problems facing nanotechnology concerns how to assemble atoms and molecules into smart materials and working devices. Supramolecular chemistry, a very important tool here, is the chemistry beyond the molecule, and molecules are being designed to self-assemble into larger structures. In this case, biology is used to find a potential solution: cells and their pieces are made from self-assembling biopolymers such as proteins and protein complexes. One of the things being explored is synthesis of organic molecules by adding them to the ends of complementary DNA strands such as ----A and ----B, with molecules A and B attached to the end; when these are put together, the complementary DNA strands hydrogen bonds into a double helix, ====AB, and the DNA molecule can be removed to isolate the product AB.
[edit]
Advanced nanotechnology
Advanced nanotechnology, sometimes called molecular manufacturing, is a term given to the concept of engineered nanosystems (nanoscale machines) operating on the molecular scale. By the countless examples found in biology it is currently known that billions of years of evolutionary feedback can produce sophisticated, stochastically optimized biological machines, and it is hoped that developments in nanotechnology will make possible their construction by some shorter means, perhaps using biomimetic principles. However, K Eric Drexler and other researchers have proposed that advanced nanotechnology, although perhaps initially implemented by biomimetic means, ultimately could be based on mechanical engineering principles (see also mechanosynthesis)
In August 2005, a task force consisting of 50+ international experts from various fields was organized by the Center for Responsible Nanotechnology to study the societal implications of molecular nanotechnology [4].
Determining a set of pathways for the development of molecular nanotechnology is now an objective of a broadly based technology roadmap project [5] led by Battelle (the manager of several U.S. National Laboratories) and the Foresight Institute. That roadmap should be completed by early 2007.
[edit]
Interdisciplinarian ensemble
A definitive feature of nanotechnology is that it constitutes an interdisciplinary ensemble of several fields of the natural sciences that are, in and of themselves, actually highly specialized. Thus, physics play an important role—alone in the construction of the microscope used to investigate such phenomena but above all in the laws of quantum mechanics. Chemistry also play an important role in the identification of the materials, steps and synthesis of molecules for nanotechnical devices. It is not surprising, then, since Physics and Chemistry share the same principles and overlap so much, that Physical Chemistry (or Chemical physics) is probably the most fundamental discipline in the nanotechology research. This is an important concept to mention, because a lot of research depends on the background that future students will have. Of course, the best educational pathway to this type of research (perhaps the only one to master this source) is a multidisciplinary one, one with basic science and engineering knowledge.

Soal Jawab: Jiran tak peduli sekeliling punca jenayah kecil

Soal Jawab: Jiran tak peduli sekeliling punca jenayah kecil

KEJADIAN ragut yang menyebabkan kematian seorang pelajar Kolej Tunku Abdul Rahman (KTAR), Lee Khian Yip, 18, baru-baru ini, mengejutkan pelbagai pihak. Bagaimanapun, kejadian malang itu dilihat mencerminkan keadaan yang lebih besar, iaitu jenayah serius yang semakin menular di kalangan masyarakat. Sudah biasa kedengaran berlaku kejadian menyayatkan hati yang puncanya hanya kerana bertentang mata diikuti cabar-mencabar dan berakhir dengan dua pihak menggunakan senjata seperti pisau atau apa saja yang mudah dicapai seperti kerusi untuk bergaduh. Begitu juga dengan perselisihan faham kecil berakhir dengan kejadian pembunuhan. Begitu murahkah nyawa manusia hari ini? Untuk memperkatakan isu ini, wartawan Berita Minggu, ZIAUDDIN SHARUDDIN dan NORAKMAH MAT YOUB menemu bual Setiausaha Eksekutif Yayasan Pencegahan Jenayah Malaysia (YPJM), Deputi Superintendan Mohd Haris Daud.

Jenayah kekerasan termasuk membunuh ketika ini semakin banyak didengar membabitkan kes yang boleh dianggap kecil termasuk ragut, samun atau pergaduhan kecil. Mengapakah ini berlaku.Memang kita lihat sejak kebelakangan ini, kejadian jenayah kecil seperti ragut dan samun hingga menyebabkan berlaku kematian. Tidak ada satu faktor yang dominan kerana ia mungkin gabungan pelbagai faktor.Antara faktor yang mempengaruhinya ialah latar belakang penjenayah terbabit yang tidak berpendidikan atau hanya mendapat pendidikan rendah dan jauh dari keluarga menyebabkan mereka mengambil tindakan sendiri.Saya juga melihat masalah ini berpunca akibat pengaruh materialistik, dengan gaji rendah tidak sampai RM1,000 tetapi mahu macam-macam. Kalau telefon bimbit, mesti yang ada kamera dan hendak pakaian ada jenama. Apabila pendapatan tidak mencukupi untuk menampung perbelanjaan harian, mereka melakukan jenayah yang dianggap kecil-kecilan tetapi membawa padah yang tidak kurang buruk, termasuk hingga menyebabkan kematian.Jenayah kecil-kecilan adalah perkembangan yang berbeza dengan masa lampau seperti jenayah membabitkan kongsi gelap. Penjenayah begini sebenarnya tidak mempunyai disiplin seperti anggota geng kongsi gelap yang tahu siapa dan waktu boleh bunuh mangsa. Tetapi penjenayah kecil-kecilan bertindak mengikut naluri sendiri dan kita tidak dapat menjangka tindakan mereka kerana apabila terdesak, tindakan seperti membunuh boleh berlaku.Adakah ini menunjukkan ada sesuatu yang tidak kena dalam masyarakat dan malangnya gejala ini semakin menular.Apa yang berlaku sekarang tidak muncul dengan tiba-tiba. Kita perlu akur bahawa masyarakat sekarang, terutama di kawasan bandar tidak lagi sama seperti masyarakat pada 1950-an atau 1960-an.Latar belakang mereka yang terbabit dalam jenayah menunjukkan mereka sejak kecil dibesarkan dalam suasana kurang atau tiada langsung kawalan ibu bapa. Jika sejak kecil bersikap agresif, apatah lagi apabila menjadi seorang remaja dan dewasa, kemudian bekerja dan tinggal berasingan di tempat lain. Keluarga tidak lagi mempunyai kawalan terhadap dirinya.Suka atau tidak, masyarakat memainkan peranan sebagai pengawal tingkah laku dan ia dipraktikkan pada masa lalu. Walaupun masih wujud, tetapi saya percaya amalan ini semakin pupus ditelan zaman. Masyarakat hari ini tidak begitu mempedulikan keadaan sekeliling. Menegur kenakalan anak jiran bukan lagi kebiasaan. Malah, interaksi antara jiran amat terhad. Mereka hidup tanpa mengenali jiran masing-masing. Kita tidak perlu melihat terlalu jauh. Cuba lihat diri kita sendiri, terlalu sibuk keluar awal pagi dan pulang lewat malam setiap hari. Ia memberi peluang kepada penjenayah mengeksploitasi kelemahan ini. Sebagai contoh, seorang penjenayah dengan mudah memecah masuk sebuah rumah kerana jirannya mungkin menyangka penjenayah saudara jirannya. Ada juga kes yang jiran tidak mempedulikan kehadiran orang tidak dikenali di kawasan itu.Apakah dadah turut menjadi antara punca utama kes jenayah kecil-kecilan yang berbahaya.Kita juga tidak menolak kemungkinan penjenayah begini dipengaruhi dadah. Kebanyakan dadah yang popular sekarang adalah jenis sintetik yang cara pembuatan menggunakan bahan kimia tidak berkualiti. Rangsangan dadah ini menyebabkan penggunanya hilang kawalan. Hal ini menyebabkan YPJM sebulat suara menentang keras sebarang cadangan untuk melanjutkan masa operasi pusat hiburan hingga awal pagi seperti jam 5pagi. Kita bimbang kerana ia akan memudahkan mereka yang terbabit dalam penyalahgunaan dadah mendapatkan bahan terlarang ini.Pihak pengedar pula akan mendapat hasil lebih lumayan sedangkan masalah sosial, termasuk kejadian jenayah menjadi lebih parah.Walaupun kadar jenayah di beberapa negeri, termasuk Kuala Lumpur dilaporkan semakin menurun, tetapi ia adalah gambaran secara keseluruhan. Bagaimana dengan trend jenayah seperti dibincangkan ini.Penurunan kadar jenayah di beberapa negeri seperti dilaporkan adalah perkembangan positif dan kita harap keadaan ini akan berterusan. Bagaimanapun, untuk pemahaman masyarakat, kes jenayah meliputi jenayah kekerasan, harta benda, komersial dan narkotik. Penurunan kadar jenayah yang dilaporkan adalah secara keseluruhan.Sebagai contoh, kes curi bagi tempoh enam bulan pertama tahun ini sebanyak 17,110 kes menurun sebanyak 509 kes, berbanding 17,619 kes bagi tempoh sama tahun lalu.Sehubungan itu, apabila kita memperkatakan kes jenayah seperti dibincangkan ini, ia ada sedikit pengecualian. Sebagai contoh kes jenayah curi ragut atau masyarakat kenali sebagai ragut mencatatkan sedikit peningkatan, iaitu sebanyak 141 kes atau tiga peratus. Sebanyak 4,766 kes jenayah ragut berlaku antara Januari hingga Jun lalu, berbanding 4,625 kes bagi tempoh sama tahun lalu.Peningkatan kes jenayah juga boleh dilihat dari segi peningkatan kesedaran masyarakat untuk melaporkan kes jenayah kepada polis. Mungkin pada masa lalu, ada mangsa diragut, tetapi tidak melaporkan kepada polis dengan beranggapan bahawa tidak ada gunanya buat begitu kerana peragut mungkin sukar ditangkap kerana maklumat tidak mencukupi.Sebanyak 2,269 kes atau 47.61 peratus dari 4,766 kes jenayah ragut yang dilaporkan berjaya diselesaikan.Mengapa ada kawasan di Kuala Lumpur yang mencatatkan penurunan kes jenayah dan pada masa sama kawasan lain mencatatkan peningkatan.Banyak yang perlu dilakukan untuk menjadikan sesuatu kawasan itu selamat kepada orang ramai. Ia memerlukan perancangan lebih teliti dengan mewujudkan kemudahan yang mencegah atau menyukarkan kejadian jenayah berlaku.Antara yang boleh dilakukan ialah mewujudkan pemisahan antara laluan pejalan kaki dan jalan raya dengan cara meletakkan pagar atau palang besi. Pihak berkuasa tempatan juga boleh memanfaatkan landskap yang bukan saja untuk keindahan tetapi keselamatan. Sebagai contoh, peragut pasti sukar bertindak jika antara jalan raya dan laluan pejalan kaki dipisahkan oleh kawasan pokok, tetapi pokok itu perlu diselenggara dengan baik.Sebab itu, sesuatu kawasan yang berisiko tinggi berlaku kejadian jenayah perlu diberi lebih perhatian seperti memasang papan tanda untuk mengingatkan orang ramai bahawa di kawasan itu pernah berlaku kejadian ragut. Begitu juga dengan kawasan laluan orang ramai seperti antara asrama pekerja kilang atau kediaman yang menjadi tumpuan pekerja ke kilang perlu diterangi cahaya lampu dan tidak dilindungi pokok.Saya juga berharap jika kadar jenayah tinggi di sesuatu kawasan, ada pihak membuat kajian lengkap mengenai keadaan kawasan itu dari segi punca dan mekanisme untuk mencegah jenayah terus berlaku di situ. Sebagai contoh, jika hasil kajian mendapati bahawa antara jam 7 hingga 8 malam adalah waktu paling kerap kejadian jenayah berlaku, maka rondaan boleh diperhebatkan ketika waktu itu. Polis dengan pelbagai kekangan yang ada tidak mampu melakukan kajian demikian.Peningkatan jumlah warga asing turut dikatakan menjadi punca peningkatan kejadian jenayah, termasuk ragut. Benarkah dakwaan ini.Saya tidak menafikan pembabitan warga asing dalam kejadian jenayah di negara ini, tetapi bagaimanakah kita hendak mengenal pasti identiti seorang peragut kecuali dia ditangkap. Mereka memakai topi keledar `full face’ yang melindungi wajahnya. Motosikal pula menggunakan nombor pendaftaran palsu.Saya tidak ada statistik untuk menunjukkan pembabitan warga asing dalam kes jenayah begini. Lagipun, warga asing tidak berada di semua tempat. Ada kes ragut berlaku di kawasan yang warga asing tidak ramai.Kabinet sudah membuat keputusan bahawa polis perlu meningkatkan rondaan dan kawalan, tetapi persoalannya mampukah pihak keselamatan melakukannya sepanjang masa dan di semua tempat.Memang agak mustahil polis untuk melakukan rondaan dan kawalan sepanjang masa dan di semua tempat. Saya percaya polis berusaha melakukan yang terbaik, tetapi jalan penyelesaian terbaik ialah masyarakat perlu bekerjasama membanteras jenayah ini.Ia bukan hanya masalah polis, tetapi masalah masyarakat. Pertubuhan bukan kerajaan (NGO) dan persatuan penduduk perlu bekerjasama. Persatuan penduduk mempunyai peranan penting membanteras jenayah dengan mengadakan rondaan keselamatan. Malangnya ada segelintir penduduk tidak memberikan kerjasama. Mereka tidak keluar meronda pada waktu yang ditetapkan dan akhirnya rondaan berkubur.Begitu juga apabila disuruh menyumbang antara RM30 hingga RM50 untuk bayaran kepada syarikat keselamatan untuk mengadakan rondaan, ramai juga yang liat membayar sedangkan ia adalah untuk keselamatan mereka sendiri.Adakah ini menunjukkan kesedaran di kalangan masyarakat untuk membanteras jenayah masih rendah.Masyarakat perlu tanya apakah sumbangan yang mereka lakukan untuk mengatasi masalah ini. Suka atau tidak, masyarakat perlu membantu polis untuk mencegah kejadian jenayah terus berleluasa. Bagi pihak YPJM, antara sasaran kita ialah pada peringkat akar umbi, iaitu sekolah.Sasaran YPJM ialah semua sekolah rendah dan menengah mempunyai Kelab Pencegahan Jenayah dan guru kelab dilatih khusus untuk mengendalikan program membanteras pada peringkat sekolah. Ia adalah sasaran jangka panjang kerana jika pada peringkat sekolah rendah sudah mempunyai kefahaman dan pengetahuan positif mengenai jenayah, mereka akan membesar sebagai warga prihatin dan peka untuk membanteras jenayah.Ketika ini, setiap balai polis mempunyai pegawai perhubungan sekolah yang akan memantau kegiatan setiap pelajar sekolah di kawasan itu. Kita lihat sejak strategi ini dilaksanakan, sekolah yang bermasalah berjaya dikawal. Sebagai contoh, jika dulu ada pelajar menganggotai kongsi gelap, tetapi masalah ini berjaya diatasi kerana setiap masalah yang berlaku di sekolah, hubungan erat antara sekolah dan balai polis berdekatan dapat membantu menyelesaikan masalah berkenaan.Usaha untuk mengurangkan kejadian jenayah perlu dilakukan secara berterusan. Kita tidak boleh cepat jemu. Program seperti kempen, seminar dan ceramah untuk memberi kesedaran kepada masyarakat perlu dilakukan secara berterusan.Apakah tawaran wang tunai untuk menangkap penjenayah boleh membantu menyelesaikan kes seperti yang berlaku di Wangsa Maju.Ia bukan kali pertama dipraktikkan di negara ini. Polis dan beberapa agensi kerajaan tertentu memang menggunakan kaedah ini dalam sesetengah kes. Bagaimanapun, dalam kes di Wangsa Maju, tawaran itu dikemukakan pihak lain.Berdasarkan pengalaman lalu, kaedah ini memang banyak membantu menyelesaikan sesetengah kes jenayah. Bagaimanapun, kita mengharapkan usaha membanteras kejadian jenayah tidak hanya bersandarkan ganjaran wang tunai. Masyarakat perlu secara sukarela memberikan maklumat kepada polis.Bagaimanapun, keadaan belum cukup memuaskan. Keadaan ini mungkin berlaku kerana kekhuatiran masyarakat bahawa penjenayah mungkin bertindak balas terhadap diri dan keluarga menyebabkan mereka lebih rela mendiamkan diri. Begitu juga jika berlaku kejadian jenayah seperti seseorang diserang, mereka tidak peduli kerana tidak mahu terbabit dalam masalah.Mungkin sudah sampai masanya program perlindungan saksi yang wujud di sesetengah negara diperkenalkan di negara ini supaya lebih ramai tampil ke depan untuk memberikan maklumat dengan perlindungan polis.FAKTAKes ragut 2006
· WANGSA MAJU - 29 Julai Pelajar tahun pertama jurusan perakaunan Kolej Tunku Abdul Rahman (KTAR), Lee Kean Yip, 18, mati akibat kecederaan kepala dan pergelangan tangan akibat ditetak dengan parang oleh dua penjenayah ketika dalam perjalanan pulang ke rumah sewanya di TAR Villa.
· KUALA LUMPUR - 9 Julai Seorang jurujual wanita berusia 37 tahun putus jari kelingking kiri dan menerima 18 jahitan di kepala selepas bergelut dengan peragut bersenjatakan parang di Taman Putra Indah, Seri Kembangan.
· AMPANG - 27 Jun Seorang pelajar kolej menerima lebih 70 jahitan akibat ditetak peragut di depan rumahnya di Taman Putera Sulaiman, selepas menggunakan tangan sebagai perisai mengelak tetakan bertubi-tubi.
· SUBANG JAYA - 20 Jun Seorang peragut yang cuba melarikan diri selepas meragut mangsanya, seorang eksekutif wanita yang sedang meletakkan kenderaan di luar rumahnya, maut apabila motosikal dinaiki terbabas dan merempuh penghadang jalan.
· SUBANG JAYA - 19 Jun Seorang peragut maut selepas motosikal ditunggang hilang kawalan lalu merempuh tembok kecil sebelum terjatuh ketika cuba melarikan diri selepas meragut beg tangan berisi wang tunai RM650 milik seorang guru, di USJ.
· KUALA LUMPUR - 13 Jun Seorang peragut bermotosikal melarikan sebuah telefon bimbit yang disangkut di pinggang seorang pegawai polis yang berpakaian biasa. Pegawai berkenaan cuba mengejar, tetapi peragut terbabit lebih pantas melarikan diri.
· JOHOR BAHRU - 7 Jun Pengurus Jualan sebuah hotel bertaraf empat bintang, cedera parah di muka selepas diragut di hadapan lobi hotel tempat kerjanya. Mangsa jatuh tersungkur apabila dua peragut yang menunggang motosikal merentap beg tangannya dari belakang.
· SHAH ALAM - 17 Mac Seorang warga emas meragut gelang kaki bernilai RM300 seorang kanak-kanak perempuan berusia setahun yang didukung ibunya di sebuah pasar malam di Taman Sri Muda. Peragut terbabit ditangkap dan mengaku bersalah apabila dihadapkan ke mahkamah.
· KUALA LUMPUR- 20 Februari Seorang setiausaha dan pereka grafik, masing-masing kerugian lebih RM200 selepas menjadi mangsa seorang peragut bermotosikal dalam dua kejadian berasingan di sekitar kawasan ibu kota.
· AMPANG - 8 Februari Seorang wanita parah apabila kedua-dua tangannya ditetak dua lelaki bersenjatakan parang yang meragut begnya. Kejadian itu adalah yang kelima dialaminya selepas empat kejadian sama di Petaling Jaya, Puchong dan Johor Bahru.
· SUNGAI BULOH - 15 Januari Seorang peragut maut manakala mangsa dan adiknya yang membonceng motosikal cedera apabila motosikal kedua-duanya bergesel selepas mangsa mengejarnya sejauh dua kilometer.

GEJALA sosial remaja yang semakin menular

GEJALA sosial remaja yang semakin menular hingga ke tahap kritikal sejak akhir-akhir ini membuka peluang kepada stesen televisyen milik Media Prima Berhad, TV9 untuk mendedahkan dan berkongsi suka duka kehidupan sebenar remaja yang bermasalah ini.

Kini program Sahabat yang bertindak sebagai rakan tempat meluahkan masalah dan isi hati remaja diperkenalkan bagi membuka peluang mereka atau ibu bapa untuk berkongsi pengalaman hidup yang akan disiarkan setiap Khamis bermula malam ini.Program ini akan dikendalikan Hafizi Harun yang juga Pengurus Latihan di Pengasih iaitu sebuah organisasi bukan kerajaan yang membantu memulihkan remaja yang terjebak dengan najis dadah.Hafizi adalah pengantara terbaik yang dipilih sebagai orang tengah antara remaja yang bermasalah dengan masyarakat sekeliling selepas melalui pengalaman hitam hampir 10 tahun bebas daripada masalah itu.“Saya berniat untuk memberikan sesuatu pengalaman yang pernah saya lalui dalam mencari pengertian sebenar kehidupan ini, selebihnya diri kita sendiri yang akan menentukan masa depan kita.“Apa yang penting adalah sokong berupa kasih sayang seseorang yang terdekat dengan diri kita yang mampu mengubah segala-galanya,” katanya yang kini aktif memberi ceramah motivasi untuk seluruh negara termasuk di Asia, Pakistan dan Brunei serta penerima anugerah Duta Belia Negara, baru-baru ini.TV9 akan mengupas mengenai kehidupan isu masyarakat dengan keutamaan diberikan kepada gaya hidup dan masalah yang dihadapi remaja dalam menempuh kehidupan yang lebih mencabar kini.Ketua Pegawai Operasinya, Bukhari Che Muda berkata, remaja kini berhadapan dengan cabaran suka duka dalam mencari identiti sebenar. Ramai remaja berjaya dalam lapangan yang mereka ceburi dan ada pula yang tidak bernasib baik kerana terpaksa melalui penghidupan di dalam keadaan tertekan dan serba kekurangan.“Sahabat adalah satu program yang mendalami isi hati remaja dengan cara berinteraksi dan bergaul bersama mereka. Sahabat juga akan mengetengahkan remaja dengan inisiatif dan daya usaha sendiri serta bertindak memajukan diri dalam mencapai kejayaan,” katanya selepas merasmikan program Sahabat.Dalam episod pertama malam ini, Sahabat akan mendekati remaja yang berpakaian mengikut fesyen ala gothic atau kelam iaitu berpakaian serba hitam dan bergerak dalam kumpulan.Seterusnya Sahabat akan menyelami isi hati lelaki lembut di Institusi Pengajian Tinggi (IPT) dan sekolah menengah, selain black metal, mat rempit, HIV/Aids, lari rumah, agama sesat, buli dan sebagainya.

Friday, August 04, 2006

Wednesday, August 02, 2006